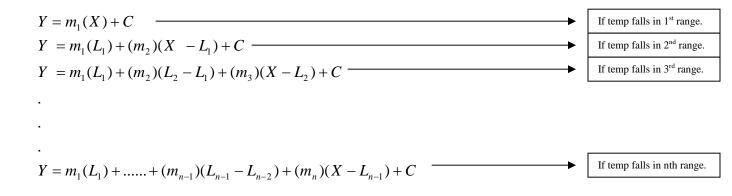
Instructions for Using Profile Equations

The methodology for calculating class hourly profile kW values was developed by running regression models on class historical demand data as a function of hourly temperature values. The models produced temperature breakpoint ranges, along with equations and its associated coefficients and constants that will be applied in the calculation of the class profile kW. Regarding breakpoint ranges, the Load Profile Process detects changes in inflection points in the hourly data (based on confidence band, co-efficient of correlation, t-statistic), prompting a breakpoint at certain data points where necessary. The write up below provides an explanation of how the regression models are used in the profile calculations along with some examples. The profile values are calculated at the sales level. Profile values at generations level = Sales Level Profile Value*loss factor.


The profile equations are generated using a 4 season, 2 day-type model. The following defined seasons correspond to the following stated time periods:

Winter:	December 1 st to February 28 th
Spring:	March 1 st to May 31 st
Summer:	June 1 st to August 31 st
Fall:	September 1 st to November 30 th

The equations in general form:

Let $m_1 \dots m_n$ = coefficients associated with temperature ranges 1 through n.

- C =Regression constant.
- X = Temperature value for given hour (ending).
- Y = Calculated profile value at sales level.
- $L_1 \dots L_n$ = upper limit for each temperature range

Ex 1: GS1, SPRING WEEKDAY HOUR 14, TEMP=50 DEGREES F:

HIGH_1 HIGH_2 HIGH_3 HIGH_4 COEFF_1 COEFF_2 COEFF_3 COEFF_4 CONSTANT 50.4741 64.5280 77.3043 99999 -0.0204 -0.0028 0.0055 0.0297 2.5810 Temp is **50** degrees FAHR which is in range 1 (0-50.4741). Use equation: $Y = m_1(X) + C$ *Y* = **Profile Value for range 1** $m_1 = COEFF_1 = -0.0204$ $X = \mathbf{TEMP} = \mathbf{50}$ C = CONSTANT = 2.581 $Y = m_1(X) + C$

= -0.02037 (50) + 2.581= 1.5625

Ex 2: GS1, SPRING WEEKDAY HOUR 14, TEMP=60 DEGREES F:

COEFF_1 COEFF_3 CONSTANT HIGH 1 HIGH_2 HIGH_3 HIGH_4 **COEFF 2** COEFF 4 50.4741 64.5280 77.3043 99999 -0.0204 -0.0028 0.0055 0.0297 2.5810 Temp is 60 degrees FAHR which is in range 2 (50.4741-64.5280). Use equation: $Y = m_1(L_1) + (m_2)(X - L_1) + C$ *Y* = **Profile Value for range 2** $m_1 = COEFF_1 = -0.0204$ $m_2 = \text{COEFF}_2 = -0.0028$ $X = \mathbf{TEMP} = \mathbf{60}$ C = CONSTANT = 2.581 $L_1 = HIGH_1 = 50.4741$ $Y = m_1(L_1) + (m_2)(X - L_1) + C$ = -0.0204(50.4741) + -0.0028(60-50.4741) + 2.5810=1.5343

Ex 3: GS1, SPRING WEEKDAY HOUR 14, TEMP=70 DEGREES F:

HIGH_1 HIGH_2 HIGH_3 HIGH_4 COEFF_1 COEFF_2 COEFF_3 COEFF_4 CONSTANT -0.0204 0.0055 50.4741 64.5280 77.3043 99999 -0.0028 0.0297 2.5810

Temp is **70** degrees FAHR which is in range 3 (64.5280-77.3043). Use equation:

 $Y = m_1(L_1) + (m_2)(L_2 - L_1) + (m_3)(X - L_2) + C$ *Y* = **Profile Value for range 3** $m_1 = COEFF_1 = -0.0204$ $m_2 = \text{COEFF}_2 = -0.0028$ $m_3 = COEFF_3 = 0.0055$ X = TEMP = 70C = CONSTANT = 2.581 $L_1 = HIGH_1 = 50.4741$ $L_2 = HIGH_2 = 64.528$

τ7

 $Y = m_1(L_1) + (m_2)(L_2 - L_1) + (m_3)(X - L_2) + C$ = -0.0204(50.4741) + -0.0028(64.528-50.4741) + 0.0055(70-64.528) + 2.581=1.5419

Ex 4: GS1, SPRING WEEKDAY HOUR 14, TEMP=80 DEGREES F:

HIGH_1	HIGH_2	HIGH_3	HIGH_4	COEFF_1	COEFF_2	COEFF_3	COEFF_4	CONSTANT
50.4741	64.5280	77.3043	99999	-0.0204	-0.0028	0.0055	0.0297	2.5810

Temp is **80** degrees FAHR which is in range 4 (77.3043-99999). Use equation:

$$Y = m_1(L_1) + (m_2)(L_2 - L_1) + (m_3)(L_3 - L_2) + (m_4)(X - L_3) + C$$

$$Y = \text{Profile Value for range 4}$$

$$m_1 = \text{COEFF}_1 = -0.0204$$

$$m_2 = \text{COEFF}_2 = -0.0028$$

$$m_3 = \text{COEFF}_3 = 0.0055$$

$$m_4 = \text{COEFF}_4 = 0.0297$$

$$X = \text{TEMP} = \textbf{80}$$

$$C = \text{CONSTANT} = 2.581$$

$$L_1 = \text{HIGH}_1 = 50.4741$$

$$L_2 = \text{HIGH}_2 = 64.528$$

$$L_3 = \text{HIGH}_3 = 77.3043$$

$$\begin{split} Y &= m_1(L_1) + (m_2)(L_2 - L_1) + (m_3)(L_3 - L_2) + (m_4)(X - L_3) + C \\ &= -0.0204(50.474) + -0.0028(64.528-50.4741) + 0.0055(77.3043-64.528) + 0.0297(\textbf{80}-77.3043) + 2.581 \\ &= \textbf{1.6622} \end{split}$$