## Instructions for Using Profile Equations

The methodology for calculating class hourly profile kW values was developed by running regression models on class historical demand data as a function of hourly temperature values. The models produced temperature breakpoint ranges, along with equations and its associated coefficients and constants that will be applied in the calculation of the class profile kW. Regarding breakpoint ranges, the Load Profile Process detects changes in inflection points in the hourly data (based on confidence band, coefficient of correlation, t-statistic), prompting a breakpoint at certain data points where necessary. The write up below provides an explanation of how the regression models are used in the profile calculations along with some examples. The profile values are calculated at the sales level. Profile values at generations level = Sales Level Profile Value*loss factor.

The profile equations are generated using a 4 season, 2 day-type model. The following defined seasons correspond to the following stated time periods:

Winter: $\quad$ December $1^{\text {st }}$ to February $29^{\text {th }}$
Spring: March $1^{\text {st }}$ to May $31^{\text {st }}$
Summer: June $1^{\text {st }}$ to August $31^{\text {st }}$
Fall: $\quad$ September $1^{\text {st }}$ to November $30^{\text {th }}$

The equations in general form:
Let $m_{1} \ldots m_{n}=$ coefficients associated with temperature ranges 1 through $n$.
$C=$ Regression constant.
$X=$ Temperature value for given hour (ending).
$Y=$ Calculated profile value at sales level.
$L_{1} \ldots L_{n}=$ upper limit for each temperature range


## Ex 1: GS1, SPRING WEEKDAY HOUR 14, TEMP=50 DEGREES F:

| HIGH_1 | HIGH_2 | HIGH_3 | HIGH_4 | COEFF_1 | COEFF_2 | COEFF_3 | COEFF_4 | CONSTANT |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 50.4741 | 64.5280 | 77.3043 | 99999 | -0.0204 | -0.0028 | 0.0055 | 0.0297 | 2.5810 |

Temp is $\mathbf{5 0}$ degrees FAHR which is in range 1 (0-50.4741). Use equation:

$$
\begin{aligned}
Y=m_{1}(X) & +C \\
Y & =\text { Profile Value for range } \mathbf{1} \\
m_{1} & =\text { COEFF_1 }=-0.0204 \\
X & =\text { TEMP }=\mathbf{5 0} \\
C & =\text { CONSTANT }=2.581
\end{aligned}
$$

$$
Y=m_{1}(X)+C
$$

$$
=-0.02037(50)+2.581
$$

$$
=1.5625
$$

Ex 2: GS1, SPRING WEEKDAY HOUR 14, TEMP=60 DEGREES F:

| HIGH_1 | HIGH_2 | HIGH_3 | HIGH_4 | COEFF_1 | COEFF_2 | COEFF_3 | COEFF_4 | CONSTANT |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 50.4741 | 64.5280 | 77.3043 | 99999 | -0.0204 | -0.0028 | 0.0055 | 0.0297 | 2.5810 |

Temp is $\mathbf{6 0}$ degrees FAHR which is in range 2 (50.4741-64.5280). Use equation:
$Y=m_{1}\left(L_{1}\right)+\left(m_{2}\right)\left(X-L_{1}\right)+C$
$Y=$ Profile Value for range 2
$m_{1}=$ COEFF_1 $=-0.0204$
$m_{2}=$ COEFF_2 $=-0.0028$
$X=$ TEMP $=60$
$C=$ CONSTANT $=2.581$
$L_{1}=$ HIGH_1 $=50.4741$
$Y=m_{1}\left(L_{1}\right)+\left(m_{2}\right)\left(X-L_{1}\right)+C$
$=-0.0204(50.4741)+-0.0028(60-50.4741)+2.5810$
$=1.5343$

## Ex 3: GS1, SPRING WEEKDAY HOUR 14, TEMP=70 DEGREES F:

| HIGH_1 | HIGH_2 | HIGH_3 | HIGH_4 | COEFF_1 | COEFF_2 | COEFF_3 | COEFF_4 | CONSTANT |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 50.4741 | 64.5280 | 77.3043 | 99999 | -0.0204 | -0.0028 | 0.0055 | 0.0297 | 2.5810 |

Temp is 70 degrees FAHR which is in range 3 (64.5280-77.3043). Use equation:

```
\(Y=m_{1}\left(L_{1}\right)+\left(m_{2}\right)\left(L_{2}-L_{1}\right)+\left(m_{3}\right)\left(X-L_{2}\right)+C\)
    \(Y=\) Profile Value for range 3
    \(m_{1}=\) COEFF_1 \(=-0.0204\)
    \(m_{2}=\) COEFF_2 \(=-0.0028\)
    \(m_{3}=\) COEFF_3 \(=0.0055\)
    \(X=\mathbf{T E M P}=70\)
    \(C=\) CONSTANT \(=2.581\)
    \(L_{1}=\) HIGH_1 \(=50.4741\)
    \(L_{2}=\mathbf{H I G H} \_2=64.528\)
\(Y=m_{1}\left(L_{1}\right)+\left(m_{2}\right)\left(L_{2}-L_{1}\right)+\left(m_{3}\right)\left(X-L_{2}\right)+C\)
\(=-0.0204(50.4741)+-0.0028(64.528-50.4741)+0.0055(70-64.528)+2.581\)
\(=1.5419\)
```


## Ex 4: GS1, SPRING WEEKDAY HOUR 14, TEMP=80 DEGREES F:

| HIGH_1 | HIGH_2 | HIGH_3 | HIGH_4 | COEFF_1 | COEFF_2 | COEFF_3 | COEFF_4 | CONSTANT |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 50.4741 | 64.5280 | 77.3043 | 99999 | -0.0204 | -0.0028 | 0.0055 | 0.0297 | 2.5810 |

Temp is $\mathbf{8 0}$ degrees FAHR which is in range 4 (77.3043-99999). Use equation:

$$
\begin{aligned}
& Y=m_{1}\left(L_{1}\right)+\left(m_{2}\right)\left(L_{2}-L_{1}\right)+\left(m_{3}\right)\left(L_{3}-L_{2}\right)+\left(m_{4}\right)\left(X-L_{3}\right)+C \\
& Y=\text { Profile Value for range } \mathbf{4} \\
& m_{1}=\text { COEFF_1 }=-0.0204 \\
& m_{2}=\text { COEFF_2 }=-0.0028 \\
& m_{3}=\text { COEFF_3 }=0.0055 \\
& m_{4}=\text { COEFF_4 }=0.0297 \\
& X=\text { TEMP }=\mathbf{8 0} \\
& C=\text { CONSTANT }=2.581 \\
& L_{1}=\text { HIGH_1 }=50.4741 \\
& L_{2}=\text { HIGH_2 }=64.528 \\
& L_{3}=\text { HIGH_3 }=77.3043
\end{aligned}
$$

$$
\begin{aligned}
& Y=m_{1}\left(L_{1}\right)+\left(m_{2}\right)\left(L_{2}-L_{1}\right)+\left(m_{3}\right)\left(L_{3}-L_{2}\right)+\left(m_{4}\right)\left(X-L_{3}\right)+C \\
= & -0.0204(50.474)+-0.0028(64.528-50.4741)+0.0055(77.3043-64.528)+0.0297(80-77.3043)+2.581 \\
= & \mathbf{1 . 6 6 2 2}
\end{aligned}
$$

