PPL ELECTRIC UTILITIES CORPORATION

RELAY AND CONTROL REQUIREMENTS FOR PARALLEL OPERATION OF DISTRIBUTED GENERATION (12kV and below)

REV. 0, 12/11/2017

By: Deepak Sharma

Reviewer: ____________ signed __
Thien Hoang – Supervising Engineer
Distribution Design and Standards

Approver: ____________ signed __
Michael J. Wolf – Supervising Engineer
Distribution Substation Design
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>2</td>
</tr>
<tr>
<td>1 FOREWORD</td>
<td>5</td>
</tr>
<tr>
<td>2 SCOPE</td>
<td>6</td>
</tr>
<tr>
<td>3 OVERVIEW</td>
<td>7</td>
</tr>
<tr>
<td>3.1 INITIATING A REQUEST TO INSTALL OR CHANGE OPERATION OF GENERATION</td>
<td>8</td>
</tr>
<tr>
<td>3.2 POINT OF CONTACT (POC) and INTERTIE PROTECTIVE RELAYING (IPR)</td>
<td>8</td>
</tr>
<tr>
<td>3.3 IPR SYSTEM DESIGN REQUIREMENTS</td>
<td>8</td>
</tr>
<tr>
<td>3.3.1 Scope</td>
<td>8</td>
</tr>
<tr>
<td>3.3.2 General</td>
<td>9</td>
</tr>
<tr>
<td>3.3.3 Drawing Acceptance</td>
<td>9</td>
</tr>
<tr>
<td>3.3.4 Current and Voltage Transformer</td>
<td>10</td>
</tr>
<tr>
<td>3.3.5 Tripping Relays</td>
<td>10</td>
</tr>
<tr>
<td>3.3.6 Control Switches</td>
<td>10</td>
</tr>
<tr>
<td>3.3.7 Breaker Status</td>
<td>11</td>
</tr>
<tr>
<td>3.3.8 Indicating Lamps</td>
<td>11</td>
</tr>
<tr>
<td>3.3.9 Control Systems</td>
<td>11</td>
</tr>
<tr>
<td>3.3.10 AC System</td>
<td>11</td>
</tr>
<tr>
<td>3.3.11 DC System</td>
<td>11</td>
</tr>
<tr>
<td>3.3.12 PPL EU Reclosing</td>
<td>12</td>
</tr>
<tr>
<td>3.3.13 Targets</td>
<td>12</td>
</tr>
<tr>
<td>3.3.14 Indicating Meters</td>
<td>12</td>
</tr>
<tr>
<td>3.3.15 Current and Potential Neutral Circuits Grounding</td>
<td>12</td>
</tr>
<tr>
<td>3.3.16 Visible Break Safety Switch (or visible breaker disconnect switch)</td>
<td>12</td>
</tr>
<tr>
<td>3.4 IPR CABINET</td>
<td>13</td>
</tr>
<tr>
<td>3.4.1 General</td>
<td>13</td>
</tr>
<tr>
<td>3.4.2 Required Drawings and Instructions</td>
<td>14</td>
</tr>
<tr>
<td>3.4.3 Equipment Housing</td>
<td>14</td>
</tr>
<tr>
<td>3.4.4 Wiring and Identification Guidelines</td>
<td>16</td>
</tr>
<tr>
<td>3.5 METERING OF ELECTRIC SERVICE AND GENERATION</td>
<td>19</td>
</tr>
<tr>
<td>3.6 ACRONYMS AND ABBREVIATIONS</td>
<td>20</td>
</tr>
<tr>
<td>3.7 INTERTIE PROTECTIVE RELAY (IPR) FUNCTIONS AND INSTRUCTIONS</td>
<td>22</td>
</tr>
</tbody>
</table>
3.8 POWER TRANSFORMER CONNECTIONS AND VECTOR DIAGRAMS .. 23
3.9 BASIC INSULATION LEVELS AND CLEARANCES ... 25
3.10 VOLTAGE LEVELS AND VARIATION .. 25
3.11 INSTALLATIONS INVOLVING 15 KV CLASS SWITCHGEAR .. 25
3.12 GENERATOR ISOLATION BREAKER .. 25
3.13 TELEPHONE CIRCUITS .. 26
3.14 SCADA .. 27

4 IPP RESPONSIBILITIES ... 29
4.1 IPP RESPONSIBILITIES .. 29

5 SUBSTATION PHYSICAL ELECTRICAL AND EQUIPMENT REQUIREMENTS 32
5.1 SUBSTATION ORIENTATION .. 32
5.2 SUBSTATION LINE DEAD-END STRUCTURE ... 32
5.3 GROUNDING REQUIREMENTS .. 32
5.4 GROUND GRID TESTING .. 32
5.5 POINT OF CONTACT SWITCHING DIAGRAMS AND NOTES .. 33
5.6 EQUIPMENT AND MATERIAL .. 33
5.6.1 Power Transformers .. 33
5.6.2 Circuit Interrupting Devices (CID) - Switches and Interrupter Accessories 33
5.6.3 Fault Interrupting Devices (FID) .. 34
5.6.4 Insulator and Surge Arrester .. 34

6 PROTECTION AND CONTROL REQUIREMENTS .. 35
6.1 BACKGROUND .. 35
6.1.1 IPR Functional Requirements ... 35
6.1.2 Interconnected Synchronous Generators - General ... 35
6.1.3 Interconnected Induction Generators - General ... 35
6.1.4 Inverter based interconnections ... 36
6.2 GUIDELINES ... 36
6.2.1 12 kV line Recloser Modifications .. 37
6.2.2 Temporary Installations .. 37
6.2.3 Generator Relay Settings ... 38
6.2.4 PPL Control Switch ... 38
6.3 GENERAL – CTs, VTs, METERING, ETC .. 38

7 CLASSIFICATION OF INSTALLATIONS ... 40
7.1 TYPE 1D ... 41
7.2 TYPE 2D ... 43
7.3 TYPE 3D ... 45
7.4 TYPE 5D ... 47
7.5 TYPE 6D ... 48
7.6 TYPE 7D ... 49

8 RELAY TEST PROCEDURES.. 50

9 DRAWING REQUIREMENTS .. 51
9.1 DRAWINGS AND INFORMATION FOR REVIEW ... 51
9.2 CONTENTS OF DRAWINGS ... 52
 9.2.1 One Line Relay Diagrams .. 52
 9.2.2 Current Elementary Diagrams .. 53
 9.2.3 Potential Elementary Diagrams .. 53
 9.2.4 Control Elementary Diagram .. 54
 9.2.5 Front View Diagrams ... 55
9.3 DRAWING APPROVAL PROCEDURES ... 55
9.4 FINAL AS-BUILT DRAWINGS .. 55

10 LIST OF APPLICABLE STANDARDS .. 57

APPENDIX I – DETAILS FOR PPL EU CONTROL SWITCH (PCS) ... 60
APPENDIX II – ITEMS TO BE DISCUSSED DURING THE PROJECT .. 61
APPENDIX III – LIST OF PPL EU APPROVED IPR RELAYS ... 66
APPENDIX IV – POWER STATION REQUEST FOR TELECOMMUNICATIONS SERVICE.. 67
1 FOREWORD

The information contained in this document was prepared by PPL Electric Utilities. This information represents minimum design requirements relative to safe and reliable operation for the PPL Electric Utilities system and personnel. However, this shall not relieve the customer from sole and complete responsibility for all aspects of design, installation, and operation of his facilities. Neither PPL Electric Utilities nor any person acting on behalf of PPL Electric Utilities; (a) makes any warranty with respect to the use of information disclosed in this document or that such use may not infringe on privately owned rights; or (b) assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information disclosed in this document.

To ensure that all proposed installations are handled uniformly and to minimize the possibility of misinterpreting PPL EU requirements, this document outlines the protection requirements for parallel operation of generation facilities. These requirements will also ensure the safety of the general public and PPL EU personnel, and minimize possible damage to PPL EU equipment and that of PPL EU customers. The amount of protection applied to a particular generator will vary with the specific location on PPL EU’s system. It must be clearly understood that the protection identified in this document is for PPL EU electrical system protection, not protection of the generator or generating equipment.

For NEW installations, this document is to be used in conjunction with the document “PPL EU POC REQUIREMENTS” which covers Point of Contact (POC) installation requirements.
2 SCOPE

This document is intended for generation installations on the PPL EU distribution (12 kV) lines. The intended installations will be connected to PPL EU LINES, and are subject to being isolated from PPL EU system if the source substation line isolation device (circuit breaker, recloser, fuse, disconnect, etc.) opens for any reason.

The installation of the generation equipment shall not cause any deterioration in the quality of service to PPL EU customers.

Pennsylvania Public Utility Commission (PUC) has enacted rules for Net metering installations below 3 MVA that are NOT covered by the PJM or FERC processes. In general, these will be small installations connected at distribution voltage levels 12 kV and below. The current PA PUC rules can be found on the Pennsylvania state website.

Typically, installations between 3 MVA and 20 MVA will fall under the PJM Interconnection process, specifically in PJM Manual 14A, Section 3 “Small Resource Interconnection Process.” These facilities will generally be connected to 69 kV facilities. The practical limit for connection of generation to the PPL EU distribution system (operating at 12.47 kV), is 1.5 MVA for typical feeders. Generation in excess of 1.5 MVA will be considered on a case by case basis, but generally will not exceed 5 MVA. Facilities above the 5 MVA will typically require a 69 kV connection and additional protection equipment.

Installations at 12 kV will be covered by a combination of the REMSI (Rules for Electric Meter Service Installation) document, PA PUC, and PJM rules as noted above. Refer to “PPL EU Electric Rates & Rules” for required documents for 12kV installation.
3 OVERVIEW

INTERCONNECTING GENERATION WITH THE UTILITY SYSTEM

This document is intended to serve as a reference for PPL EU engineers and generation sponsors when planning protection for the parallel operation of a generation facility on the 12kV PPL EU system. NOTE: the term generation will be used throughout this document to designate ANY form of generation. This would include traditional PURPA installations, as well as newer Merchant Power Installations (MPI), Independent Power Producer (IPP), Distributed Generation (DG), and Distributed Resources (DR). Minimum requirements (IEEE 1547 and UL 1741) for generation intertie are identified to provide safe and effective operation of the PPL EU system. Some installations may be required to install additional protection, after a review of the proposed generation installation. No specific protection is provided for the generator by the IPR relays.

This document is intended to cover ALL generation connected to the PPL EU system. However, there are multiple AHJ; the intent is to treat all generation facilities in a similar manner.

Installations from 1 kVA to 3,000 kVA that do NOT use IEEE 1547 CERTIFIED equipment will be classified as TYPE 1D or 2D for protection requirements.

Where feasible, generation equipment built and certified to IEEE standards (IEEE 929-2000 and IEEE 1547-latest revision, and IEEE 1547.1 latest revision) and UL 1741 latest version will be permitted to be installed with little or no additional protection requirements, at the site of the generation installation. However, multiple installations on a single line or substation, or the installation of a large unit, may have sufficient impact that will require additional protection.

All inverters to be used for proposed generation shall be certified, to be compliance with UL1741 and IEEE 1547 standards. The term certified is understood to indicate that NRTL (Nationally Recognized Testing Laboratory) has tested the device to the appropriate standard. Any inverter not meeting the NRTL certification will either not be allowed to connect to the PPL EU system or will be required to install suitable external protection equipment to provide the same level of protection. Further, the inverter vendor must provide copies of the certification of the inverter equipment from the NRTL. Self-certification or certification by a third party that is not listed on the OSHA web site will not be accepted.

For all generation installations, especially the small residential ones, it shall be the IPP/customer and their engineer/electrician responsibility to determine if the operational voltage limits of the inverter might exceed at the maximum operational output of the generation during normal operation of the PPL EU system. It should be recognized that at certain times of the year, the PPL EU system voltage will approach the maximum limit as measured at the meter base of 126 or 252 volts. The addition of generation can cause this voltage to increase, or if there is a sufficiently long branch circuit to the generation equipment, the voltage at the inverters may be high enough for the inverters to trip off on over voltage. It shall be the IPP/customer's responsibility to take the possible voltage rise into consideration in the design of their facility.

Generation will not be permitted to connect to a PPL EU "Low Tension" network system, without prior detailed review. Installation of generation equipment on a low-tension network can have a very negative impact on the operation of the network. Under no circumstances will the PPL EU network protector be used to isolate the generation from the PPL EU system. The installation of generation on PPL EU network system must not result in operation of the network protectors for reverse flow conditions. See IEEE 1547 Section 8.1.4.2.
Multiple PPL EU Sources

Under no circumstances shall two or more PPL EU lines of differing voltages (12 kV and 69 kV, for example) be paralleled through generation facilities. Where one or more sources is intended to back-up the primary supply to a generation facility, the electrical circuit to the primary supply must be interrupted before the circuit to the back-up is closed. (Trapped Key Interlock Switches or break-before-make transfer switches are suitable devices for this type of transfer.)

Multiple sources at the same voltage level will be handled on a case by case basis.

3.1 INITIATING A REQUEST TO INSTALL OR CHANGE OPERATION OF GENERATION EQUIPMENT

All projects to add or modify a connection to PPL EU system should start with a call to the PPL EU Business Account Services (BAS) Group at 1-888-220-9991, menu option 4, or email at businessaccounts@pplweb.com to contact a BAS representative, who will be happy to respond to your inquiry. Alternatively, you may initiate a contact to BAS via the PPL website at: www.pplelectric.com.

Any deviation from the PPL EU’s approved design, without notifying PPL EU and getting a new approval (as required), shall be considered as violation of PPL EU requirements, which may result in immediate disconnection of customer’s facility from PPL EU system.

3.2 POINT OF CONTACT (POC) and INTERTIE PROTECTIVE RELAYING (IPR)

This document defines specific practices required for the interconnection of generation to the utility system at 12 kV. The point of interconnection for a customer facility will be defined by the term Point of Contact (POC), PCC, or POI, which defines the physical point where the customer’s facilities connect to the PPL EU system. This is also the preferred location where the Intertie protective relay (IPR) protection should be applied.

The POC and IPR protective relay functions MUST be in separate protective relays and must be for PPL EU use only. Under no circumstances will IPR or POC relays be used for customer functions or logic. Where practical separate CTs should be used for these functions, see Section 6.3.

Refer to “PPL EU POC REQUIREMENTS” for specific POC protection requirements.

3.3 IPR SYSTEM DESIGN REQUIREMENTS

3.3.1 Scope

The scope of this document is limited to the Intertie Protective Relaying and Controls, it does not cover the POC protection or any other relaying applied for the protection of the generator or any other equipment associated with the generation facility.

The IPR cabinet or panel shall contain all relays and controls specified by PPL EU for a particular installation, with the possible exception of the Voltage Check and Synch. Check functions which may be applied on a per generator basis for multiple generator installations.

PPL EU prefers a dedicated cabinet suitable for a PPL EU padlock; however, if this is not practical, passwords can be enabled on the microprocessor based protection relays to limit access. The IPR protection equipment is installed to
protect the PPL EU system from adverse effects of the generation. For this reason, controls of this equipment shall remain with PPL EU. This can be in the form of a locked cabinet (PPL EU lock), suitable passwords on the protective equipment, or a combination of both forms of control.

If there is substantial distance or other equipment between the generation equipment and PPL EU, it may be necessary to have the sensing CTs and PTs located at the point of common coupling (PCC). Also in this case, the generation operator may desire to have the IPR relaying operate a breaker other than the generation breaker. When the CTs, PTs, or controlled breaker are remote from the IEEE 1547 compliant equipment, then the protection and drawings requirements below need to be met.

3.3.2 General

The PRIMARY FUNCTION of the Intertie Protective Relaying is to ISOLATE the GENERATOR and/or any GROUND SOURCE (if present) from the PPL EU system for faults on the PPL EU system or whenever continued operation would be detrimental to PPL EU or PPL EU customers.

The SECONDARY FUNCTION of the IPR is to BLOCK CLOSING of all circuit breakers that can be used to parallel the generation whenever the PPL EU source is unavailable or abnormal.

Unless specified, all relays shall use phase-to-neutral potential (67 volt taps) and phase-current (from WYE connected CTs). Proper phasing and polarities must be followed as indicated in manufacturers' instruction books. ALL IPR relays and SCADA transducers are to be connected according to PPL EU phase designations.

All relays must incorporate an isolation device, to isolate ALL inputs and ALL outputs of the IPR relaying for testing.

Contact PPL Electric Utilities for a list of currently approved isolation switches.

3.3.3 Drawing Acceptance

All IPR drawings shall be reviewed by PPL EU for acceptance. The elementary diagrams (potential, current, and control) and the physical layout drawing must be ACCEPTED by PPL EU before the facility can be placed in service. The IPP is expected and required to submit ALL drawings required to complete the review of Intertie Protection Relaying design, PT and CT inputs, the DC supplies, trip/close coils of the controlled equipment as well as any and all interlock devices. This includes any manufacturers or subcontractor drawings. NOTE: all drawings submitted electronically must be scalable to the original size for plotting. See "Drawing Requirements for Generation Intertie Protective Relay Cabinets" for further information.

ALL drawings submitted to PPL EU for the generation facility, above 10 kVA must be signed by a licensed Professional Engineer in good standing in the Commonwealth of Pennsylvania.

All drawings are reviewed subject to this NOTICE:

This information was prepared from a review of customer drawings by PPL Electric Utilities. Drawing review applies only to the general arrangement of the facilities and the primary and the control equipment associated with the Intertie Protection Equipment. Neither PPL EU nor any person acting on behalf of PPL EU (a) assumes any responsibility for the correctness of design, drawings, installation or operation; or (b) assumes any liabilities with respect to the use of, or for damages of any kind resulting from the use of, any comments disclosed in the review document.

NOTE: It is suggested that, panel construction should not begin until PPL EU approval has been obtained on the IPR drawings.
3.3.4 Current and Voltage Transformer

PPL EU shall review the voltage transformer (VT or PT) and current transformer (CT) ratios. In general, we require WYE connected VTs (or PTs) and WYE connected CTs. These VTs and CTs must be relaying class accuracy and be able to support the connected burden during normal load and fault conditions. Typically 200 VA PTs (or VTs) and class C400 CTs will be acceptable for facilities using discrete relays. IEEE 1547 compliant equipment using remote mounted CTs and PTs will be required to supply equipment compatible with the IEEE 1547 manufacturer’s specifications. *Equipment with lower ratings must be reviewed by PPL EU.*

PPL will supply fault current data at the point of interconnection to facilitate the proper sizing of protective equipment.

NOTE: CTs and VTs (relay windings) are NOT to be shared with any customer or generation relaying, or revenue metering, without prior PPL EU approval.

ATTENTION: Voltage Transformers at 12kV, on the PPL side of the POC/IPR circuit breaker MUST have adequate high voltage fusing to protect PPL EU system from equipment failure.

3.3.5 Tripping Relays

The current microprocessor based protective relays typically provide multiple trips and block close contacts. It is expected that these contacts will be connected directly to the required breaker for trip and block close functions.

When a normally de-energized auxiliary or lockout relay is required, and used to trip and block closing of the generator or other breaker, the customer must install suitable equipment to monitor continuity of this relay coil, without affecting operation.

3.3.6 Control Switches

PPL CONTROL SWITCH (PCS) shall be located in the IPR Cabinet, see Appendix I for control switch details.

The generator must provide a control switch (designated PCS), located in the IPR cabinet for PPL EU use. This switch will provide the capability to locally disconnect the generation from the PPL EU system when circumstances require manual disconnection.

A standard PPL EU control switch (General Electric Company Type SB-1, Model 16SB1B2X2) or equivalent with flag, sliding contacts, etc. must be used for the PPL EU control switch. Alternative suppliers for this equipment will be considered as long as the functional requirements are met.

The PPL EU control switch shall be a three-position switch with spring return from close to normal and from trip to normal. (The "close" position shall be to the right of "Normal" and the "Trip" position shall be to the left of "Normal." This will maintain compatibility with standard PPL EU controls.)

The PPL EU switch shall be able to trip but NOT close the generator isolation circuit breaker. The PPL EU control switch will provide an interlock to block closing of the generator isolation circuit breaker unless the PPL EU control switch is in the Normal After Close (NAC) position. This switch is required to be pad-lockable to prevent unauthorized access. The exception to this requirement is for facilities under PJM agreements and subject to PJM rules and regulations.
3.3.7 Breaker Status

PPL EU must be able to determine the actual status of the generator (on line or off line) before any switching is attempted on the safety switch or point of contact air switch. Indicating lamps (driven by circuit breaker auxiliary switches) and a means of sensing actual current flow (CTs and an ammeter) or a physical indication (breaker semaphore) must be available to PPL EU switchman to verify the generation is not in parallel operation.

3.3.8 Indicating Lamps

Two indicating lights should be located within 6" of the PPL EU control switch: A red lamp (labeled CLOSED) to indicate when the generator isolation circuit breaker is closed, and a green lamp (labeled OPEN) to indicate when the circuit breaker is open.

3.3.9 Control Systems

The generation customer has the option to use either an AC or DC control system as described in Section 3.3.10 and Section 3.3.11. Capacitor trip devices shall not be allowed.

3.3.10 AC System

Typically AC control schemes will be used on very small generation projects. The AC control system supply must use 60 Hz power derived from the PPL EU line. The system must be designed to be fail-safe and the failure of any single component must result in a trip of the generator isolation circuit breaker.

NOTE: The AC system should use continuously energized auxiliary relays with contacts to trip the generator circuit breaker whenever the relays drop out. If a molded case circuit breaker (or equal) is used, it must be equipped with an undervoltage trip option.

All installations must isolate (trip) the generator in such a manner that return of the generation (i.e. closure of the generator or POC breaker) can only occur by:

- A manual operation under the direct control of the PPL EU System Operator
- Or
- A time-delayed automatic synchrocheck or voltage check supervised operation after the PPL EU source has returned to normal.

Under any circumstances the generator breaker shall not be closed immediately upon restoration of the PPL EU source. Automatic operation of these facilities must be discussed with PPL EU.

White light indication lamps and nameplate must be provided to monitor the AC source.

3.3.11 DC System

This system will use a battery to supply tripping energy to the circuit breaker. This DC source must be continuously monitored by the (27/DC) undervoltage relay which will trip the circuit breaker if the DC source voltage falls below 10% of nominal. In general, the DC system should use normally de-energized relays.

All such installations must isolate (trip) the generator in such a manner that uncontrolled automatic reclosing of the isolation breaker cannot occur for:

- A manual tripping operation
- Or
• An automatic (protective relay initiated) operation. In such situations, a time-delayed automatic
synchrocheck or voltage check supervised operation is required to close the generator breaker after the PPL
EU source has returned to normal.

The generator breaker must not close immediately upon restoration of the PPL EU source. An automatic reclosing
operation of these facilities must be discussed with PPL EU prior to implementation.

An amber or yellow indication lamp, with a nameplate, must be provided to monitor the DC source.

3.3.12 PPL EU Reclosing

Synch. check or voltage supervised closing of generator isolation breaker is required to protect PPL EU system and
the equipment of PPL EU customers. Unsupervised reclosing with parallel generation could cause damage to
customer’s equipment. It is the customer’s responsibility to evaluate the potential impact of PPL EU reclosing
practices on the generation system, and to provide suitable protection.

PPL EU normally provides automatic multiple shot reclosing on all 12 kV line circuit breakers. Additionally,
automatic sectionalizing for faults is provided on the distribution system with electronic and hydraulic reclosers that
reclose in approximately 2 seconds following a trip operation. To protect both PPL EU and customer's equipment
from possible damage due to out-of-phase reclosing, the substation 12 kV line circuit breaker and the line reclosers
may have to be modified to have voltage check relays.

3.3.13 Targets

Individual Intertie Protective Relays (IPR) must be equipped with targets that indicate operations. These targets shall
operate only when the associated relays trip the generator isolation circuit breaker. Microprocessor based relays will
have internal targets (typically LED indicators) to indicate the type of fault, and trip status.

3.3.14 Indicating Meters

Where required, the customer shall install an ammeter to indicate the flow of current in the POC air switch.

For three-phase installations, an ammeter switch (General Electric Company, Westinghouse, or Electro Switch) must
be installed to allow ALL phase currents to be read.

NOTE: If SCADA is to be installed, the above ammeters should be replaced with suitable IEDs (Intelligent Electronic
Devices). This meter will be directly connected to the PPL EU SCADA to supply the required analog data, equipment
position, and can supply local indication of current.

3.3.15 Current and Potential Neutral Circuits Grounding

Neutral circuits should not be confused with the ground circuit. All current and potential neutrals shall be isolated
from all other circuits, and be grounded at one point only. The preferred grounding location will be at the IPR
cabinet, on the cable side of the isolating links. Other locations can be considered as long as the safety of PPL EU
personnel is not compromised.

3.3.16 Visible Break Safety Switch (or visible breaker disconnect switch)

DEFINITION

A switch, when in the open position, can allow the physical contacts to be viewed and provides electrical isolation of
generator from PPL EU system.
ACCEPTABLE DEVICES

Devices in compliance with IEEE 1547, devices designated for use as ‘Visible Break Disconnect’, fused disconnect switches, circuit breakers that can be physically removed from switchgear and locked on the removed position.

NON-ACCEPTABLE DEVICES

Following devices are not acceptable as visible break safety/disconnect switch:

- Load-break switches with arc chutes that obscure a direct view of the contacts with the switch in the open position.
- Molded case circuit breakers.
- Any device with hidden or non-observable contacts.

This device is required on all generation installations except the single phase UL1741 certified inverter based installation of 10 kVA or less.

A "racked out" breaker can be considered as a visible break as long as it is capable of being locked in the “racked out” position. However, if the facility requires load-break capability, then a second device must be installed in series with the visible break safety switch to provide the load breaking capability.

This visible break disconnect switch is a safety devices and must be reviewed by PPL EU Engineering for correct application, position and type, prior to the start of construction.

Customer facilities where multiple generators are installed, one designated visible break disconnect switch must disconnect all generators from PPL EU system.

A warning sign must be placed for visible break disconnect switch to state “BOTH SIDE ENERGIZED IN CLOSED AND OPEN POSITION”.

Please contact PPL EU for the latest specification, possible switch locations, and types of acceptable switches.

3.4 IPR CABINET

PPL EU requires control of the intertie protective relaying. This can be provided by a dedicated pad-lockable cabinet, with a PPL EU lock, or by the use of passwords on the relays or both. PPL EU will specify relaying requirements and any special metering for the generation installation.

This cabinet is expected to be located inside a suitable building to protect the sensitive electronic equipment from weather, and to provide shelter during maintenance activities. Locating the IPR equipment in a pole mounted cabinet, along a distribution line, is not acceptable. Locating this in a metal enclosed switchgear facility would be acceptable.

Following specifications must be followed as closely as possible for all proposed generation installation:

3.4.1 General

- Only "Intertie Protective Relays and Controls" as detailed by PPL EU shall be installed in the IPR cabinet, unless passwords have been implemented to limit access to the IPR relay(s). The IPR relay(s) will NOT contain any IPP or generation logic, interlocks, alarms, or controls.
• The customer shall furnish all equipment required for the IPR cabinet, except the special metering equipment, and the SCADA protocol converter, if required.

• All component (relay, resistor, fuse, etc.) ratings and ranges must be reviewed by PPL EU.

• The IPP is requested to identify PPL EU as the end user to all suppliers of protective relays and switches. In general PPL EU will maintain the equipment, and we request access to possible firmware updates or manufacturers service bulletins.

• The maximum voltages allowed in the cabinet are $140V_{DC}$ and $240V_{AC}$ nominal. Any voltages above this level must be barricaded and labeled.

• All relays must be current production utility grade relays, and must be reviewed by PPL EU. PPL EU list of currently approved IPR relays is presented in Appendix III.

• PPL will inspect the cabinet prior to assuming operational control; any deficiencies must be corrected by the generator before acceptance.

• The customer shall be responsible to mount the cabinet in an easily accessible location. The customer shall provide an access procedure for PPL EU access to any PPL EU owned, maintained, or controlled equipment (IPR, DTT or SCADA).

• The customer shall supply copies of the drawings listed in Section 3.4.2 for PPL EU review and acceptance. Contact PPL EU for the specific quantity required. AutoCAD is the preferred electronic format; however, PDF is also acceptable. The drawings will be assigned a PPL EU drawing number, and entered into the PPL EU drawing system, and re-issued as the ‘drawings of record’ for the IPP installation.

• ALL drawings must be suitable to be scaled to “D” size (24 inches by 36 inches), except for reports, word or excel documents. Reduced size drawings are NOT acceptable.

3.4.2 Required Drawings and Instructions

• Potential/current elementary diagram(s) – showing the IPR equipment.

• Control elementary diagram(s) – showing the generation isolation circuit breaker controls.

• Wiring diagram(s) or wire list – for the Intertie protective relay cabinet.

• PPL will review elementary diagram(s) typically within 30 days of receipt. Wiring diagram(s) or list will not be reviewed. Panel construction should not begin until PPL EU has reviewed the drawings.

• The generator is responsible for the accuracy of all drawings.

• The generator shall supply copies of all "As Built" drawings and instruction books for relay switches, auxiliary relays, VTs, CTs and any other devices as requested by PPL EU, prior to final acceptance of facility. Contact PPL EU for the number of copies required.

3.4.3 Equipment Housing

For outdoor installations, there must be a minimum three (3) feet of clearance between the IPR cabinet and any fence or other structure that might interfere with the opening of the door(s) or access to the cabinet. The IPR can be installed in a switchgear type line up of cabinets provided that sufficient clearances have been provided as per NEC and NESC standards.

For indoor installations all walkways around the IPR cabinet must be at least three (3) feet wide. Any other structures or cabinets must not obstruct doors.
PPL EU strongly recommends that two (2) relays be provided, such that the failure of one will allow continued operation of the generation facility until the failure can be repaired. Failure of a single relay installation shall require the immediate disconnection of the generation from the PPL EU system. PPL EU will assume and retain ownership of the relaying installed to protect the PPL EU system, which is referred in this document as the IPR protection.

NOTE: In some cases, the generation customer may own and arrange for testing based on legal agreements for the specific project. However, PPL EU will still maintain control of the IPR equipment.

Following are the guidelines for IPR cabinet equipment housing:

3.4.3.1 General Construction

The cabinet minimum size must allow easy access to all components and if equipped, must not restrict motion of internal swing panel.

1. IPR cabinets, which will be subjected to an outdoor environment, shall conform to specifications for a NEMA Type 3R - Ventilated Enclosure. Indoor cabinets shall conform to specifications for a NEMA Type 4 Enclosure. Specifications for these enclosures are contained in NEMA Standard ICS 6-1978.

2. Single door cabinets will need the following:
 - i. A latch handle on the door with provisions for PPL EU’s padlock (3/8” hole).
 - ii. A hinged panel, opening in the same direction as the door.
 - iii. A handle to facilitate opening and closing of the hinged panel.
 - iv. A latch or equivalent to keep the panel in the open position or the fully closed position, and hold it there.
 - v. All components and wiring must be accessible from the front door.

3. For double door cabinets all components and wiring must be accessible from the front (and/or rear) doors. If all components are not accessible from the doors, then the cabinet shall have a continuously hinged panel opening in the same direction as the front access door.

4. IPR relays may be mounted on the doors of cabinets not exposed to weather. The PPL EU control switch must be mounted in a convenient location to allow easy access if switching is required. The intended use of this switch is for PPL EU use. The customer must not change the position of this switch without contacting PPL EU.

5. The IPR controls and indication lamps may be mounted on the door provided that the components subjected to an outdoor environment are for weatherproof construction.

6. Space shall be provided near the terminal blocks to allow connection of conduits.

7. Hinges exposed to the weather shall be stainless steel or equivalent non-rusting material.

8. One duplex 120VAC, 15 amps receptacle must be located in the cabinet or within 10 feet of the cabinet, and must be accessible for PPL EU use. This circuit cannot be supplied by the PT’s or VT’s used for relaying.

9. Cabinet is to be labeled "Generation name control cabinet" in black letters with a yellow background and a minimum height of 1".

3.4.3.2 Heaters

1. Heaters are required in all outdoor cabinets to control condensation, and shall operate at 120VAC, and rated at 125VAC.

2. Heaters shall not be located near a device whose performance is dependent on ambient temperature.
3. A protective screen or shield shall enclose all heaters.

4. Humidistats and thermostats may be installed, subject to PPL EU review, to control heat during summer months and maintain an adequate temperature differential if there is sufficient heat provided by other components.

3.4.3.3 Grounding

1. Cabinet and duplex receptacle must be solidly grounded.

3.4.4 Wiring and Identification Guidelines

Following are the guidelines for wiring and identification of cabinet equipment:

3.4.4.1 General

1. Cabinet wiring shall meet current NEC and industry standards, and suitable for operation at 90°C.

2. Cabinet wiring should be free from abrasions and tool marks, and all bends of wires shall have a minimum of 1/4" radius.

3. All wires should be anchored to the cabinet or bundled when running between devices. Wiring should be installed so that it can be visually traced and checked.

4. Wiring should be installed so as to avoid damage to the cable and its insulation. Movement of the hinged panel shall not damage the cable or its insulation or cause stress to the termination points on the panel or on the door.

5. Wiring and device location should not prevent the removal of any equipment or block access to equipment for inspection and maintenance.

6. All equipment should be mounted and wired in such a manner that no energized terminals or connections are exposed with cabinet swing panels and doors closed.

7. All protective relays or IEDs (Intelligent Electronic Devices) which are not equipped with internal isolation devices must be connected through an external test device (i.e., WHSE FT-1 or similar as determined and approved by PPL EU). ALL inputs and outputs for protective relays and IEDs are to be connected through suitable test switches. Further the switches are to be connected to allow the isolation of the device and the injection of current or voltage WITHOUT disturbing other devices that may be connected to the same CTs or PTs.

8. All incoming and outgoing cables/conductors will terminate on sliding link terminal blocks located in the IPR cabinet.

3.4.4.2 Terminal Blocks

1. Terminal blocks shall be mounted such that the connections and links are accessible and not blocked by projecting equipment.

2. Terminal blocks shall be mounted with a minimum separation of 6" from sidewalls and adjacent equipment and a minimum of 4" separation from the bottom of the housing.

3. Terminal blocks shall be mounted such that the sliding link:
 i. Falls closed when loosened, if mounted in horizontal rows.
 ii. Moves toward the front of the cabinet when opened, if mounted in vertical rows on side panels.
iii. Moves away from the panel centerline when opened, if mounted on the rear panel.

4. There shall be a minimum of 10% or 2, whichever is a greater, spare terminal included in the cabinet for modifications.

3.4.4.3 Terminal Connections

Suitable connections or connector are to be used for the applications. PPL EU prefers Ring Tongue Lugs, which completely encircle the screw or the stud. The crimping tool should be suitable for the connectors used. Soldered terminals or connections should generally be avoided.

3.4.4.4 Identification

A suitable means of identifying the conductors or wiring should be employed to provide a method to trace the wiring.

3.4.4.5 Nameplates

Suitable nameplates should be applied to the various pieces of equipment to avoid confusion or switching errors. The actual text on the nameplates should be shown on the drawings for PPL EU review.

The same wording on these nameplates should be referenced in any operational instructions.

Below is a typical list of nameplate schedules.

NAMEPLATE SCHEDULE

<table>
<thead>
<tr>
<th>FIG</th>
<th>DIM A</th>
<th>DIM B</th>
<th>HEIGHT OF LETTERS</th>
<th>WHERE USED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-1/2</td>
<td>1</td>
<td>7/32</td>
<td>All primary circuits on generating or substation switchboards (up to two lines)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>¼</td>
<td>1/8</td>
<td>Equipment on switchboards or in cabinets (up to 3 lines)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2-1/4</td>
<td>1-1/2</td>
<td>1/8</td>
<td>Equipment on switch boards or in cabinets (up to 3 lines)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>1</td>
<td>1/8</td>
<td>Equipment on switch boards or in cabinets (up to 4 lines)</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3-5/8</td>
<td>¼</td>
<td>1/8</td>
<td>3 gang fuses and indicating lights (up to 3 lines)</td>
</tr>
<tr>
<td>10</td>
<td>2-3/4</td>
<td>1-1/4</td>
<td>1/8</td>
<td>Equipment on switch boards or in cabinets (up to 5 lines)</td>
</tr>
<tr>
<td>11</td>
<td>1-5/8</td>
<td>13/16</td>
<td>1/8</td>
<td>SCADA</td>
</tr>
<tr>
<td>12</td>
<td>4-1/2</td>
<td>1</td>
<td>7/32</td>
<td>Small cabinet doors (up to 2 lines)</td>
</tr>
</tbody>
</table>

NOTE: All dimensions in inches.
<table>
<thead>
<tr>
<th>FIG</th>
<th>DIM A</th>
<th>DIM B</th>
<th>HEIGHT OF LETTERS</th>
<th>WHERE USED</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>8</td>
<td>2</td>
<td>1/2</td>
<td>Large cabinet doors (up to 2 lines)</td>
</tr>
<tr>
<td>14</td>
<td>3-1/2</td>
<td>1-1/4</td>
<td>7/32</td>
<td>Identification on front and back of switchboards (up to 3 lines)</td>
</tr>
</tbody>
</table>
3.5 METERING OF ELECTRIC SERVICE AND GENERATION

For billing metering of electric service at 12 kV or lower voltages, please refer to the PPL document titled, REMSI (Rules for Electric Metering and Service Installation), at the below mentioned link:

LINK: [REMSI](#)

Distributed Generation installation may require metering facilities which are not discussed in REMSI. To obtain those requirements, please contact PPL EU Business Accounts Services at 1-888-220-9991, menu option 4, or email us at businessaccounts@pplweb.com.

The subject of metering needs to be discussed in detail to ensure that the correct sensing equipment is installed for the desired operation. There are many variations on the sale and purchase of the power associated with these types of facilities. A complete discussion of all of these options is outside the scope of this document. Contact PPL Electric Utilities for the various options.

Generators that intend to participate in the PJM market will need to make arrangements to get specific information from PJM in a timely manner. One method to do this is the installation of a PJM SCADA RTU. This PJM SCADA RTU uses Internet to transmit the required data to PJM. It also connects to revenue meters to get the required information. This option needs to be discussed if PPL EU supplies the metering equipment.
3.6 ACRONYMS AND ABBREVIATIONS

The following defined acronyms and abbreviations are used in this document:

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternation Current</td>
</tr>
<tr>
<td>AHJ</td>
<td>Authority Having Jurisdiction</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>BIL</td>
<td>Basic Insulation Level</td>
</tr>
<tr>
<td>CTs</td>
<td>Current Transformers</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DFAG</td>
<td>Double-fed Asynchronous Generator</td>
</tr>
<tr>
<td>DFIG</td>
<td>Double-fed Induction Generator</td>
</tr>
<tr>
<td>DG</td>
<td>Distributed Generation (aka generator)</td>
</tr>
<tr>
<td>DR</td>
<td>Distributed Resource (aka generator)</td>
</tr>
<tr>
<td>DTT</td>
<td>Direct Transfer Trip</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic Interference</td>
</tr>
<tr>
<td>EPS</td>
<td>Electric Power System</td>
</tr>
<tr>
<td>EUT</td>
<td>Equipment Under Test</td>
</tr>
<tr>
<td>FDDA</td>
<td>Fully Differential Difference Amplifier</td>
</tr>
<tr>
<td>FID</td>
<td>Fault Interrupting Device (a circuit breaker or fuse)</td>
</tr>
<tr>
<td>ICS</td>
<td>Industrial and Commercial Services</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IPP</td>
<td>Independent Power Producer (aka generator)</td>
</tr>
<tr>
<td>IPR</td>
<td>Intertie Protective Relay</td>
</tr>
<tr>
<td>KI</td>
<td>Kirk Key Interlock</td>
</tr>
<tr>
<td>MVA</td>
<td>Mega Volt Amperes</td>
</tr>
<tr>
<td>MVAr</td>
<td>Mega Volt Amperes reactive</td>
</tr>
<tr>
<td>MW</td>
<td>Mega Watts</td>
</tr>
<tr>
<td>MWh</td>
<td>Megawatt hour</td>
</tr>
<tr>
<td>NUG</td>
<td>Non-Utility Generator (aka generator)</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Controller</td>
</tr>
<tr>
<td>POC</td>
<td>Point of Contact</td>
</tr>
<tr>
<td>POI</td>
<td>Point of Interconnection (alternate for POC)</td>
</tr>
<tr>
<td>PPL EU</td>
<td>PPL Electric Utilities</td>
</tr>
<tr>
<td>PRDA</td>
<td>Path-based Recursive Decomposition Algorithm</td>
</tr>
<tr>
<td>PTs</td>
<td>Potential Transformers</td>
</tr>
<tr>
<td>PURPA</td>
<td>Public Utility Regulatory Policies Act of 1978</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse-Width Modulation</td>
</tr>
<tr>
<td>REMSI</td>
<td>Rules for Electric Meter and Service Installations</td>
</tr>
<tr>
<td>RTU</td>
<td>Remote Terminal Unit (SCADA)</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control And Data Acquisition</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>TCM</td>
<td>Trip Circuit Monitor</td>
</tr>
<tr>
<td>UL</td>
<td>Underwriters Laboratories</td>
</tr>
<tr>
<td>UPS</td>
<td>Uninterruptible Power Supply</td>
</tr>
</tbody>
</table>
3.7 INTERTIE PROTECTIVE RELAY (IPR) FUNCTIONS AND INSTRUCTIONS

TABLE 1 RELAY DEFINITIONS AND FUNCTIONS FOR FIGURES 1 to 3

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>FUNCTION</th>
<th>DESCRIPTION</th>
<th>TIME DELAY SETTINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>21Z1</td>
<td>Zone 1 Distance</td>
<td>Provides a trip signal for a power system fault on the PPL EU supply line.</td>
<td>As per the requirement.</td>
</tr>
<tr>
<td>21Z0S</td>
<td>Out-of-Step</td>
<td>Provides a trip signal for loss of power system-generator synchronism.</td>
<td>As per the requirement.</td>
</tr>
<tr>
<td>25</td>
<td>Synchronism Check</td>
<td>Provides a 'permission to close signal' to the breaker used to parallel the generation to the PPL EU system.</td>
<td>As per the requirement.</td>
</tr>
<tr>
<td>27GEN</td>
<td>Generator Voltage Check</td>
<td>Used to block closing of generator breaker (or other) if voltage is present on generator side. Used primarily with induction generators.</td>
<td>As per the requirement.</td>
</tr>
<tr>
<td>27T</td>
<td>Time Delay Undervoltage</td>
<td>Set at 88% of nominal voltage with a time delay to override local voltage dips.</td>
<td>0 - 2 Sec.</td>
</tr>
<tr>
<td>27I</td>
<td>Instantaneous Undervoltage</td>
<td>Provides a trip signal if undervoltage condition for less than 50% of nominal voltage; also provides a block closing signal if source is normal.</td>
<td>0 - 0.180 Sec.</td>
</tr>
<tr>
<td>27N</td>
<td>Narrow Band High Accuracy Undervoltage</td>
<td>Set above 27I or 27T; provides an alarm to generator operator and a trip after a delay (via 62L) of several minutes. (99% reset)</td>
<td>As per the requirement.</td>
</tr>
<tr>
<td>27DC</td>
<td>Battery Monitor</td>
<td>Set to trip the generator breaker when the battery reaches 90% of nominal DC voltage with a time delay sufficient to override momentary voltage transients.</td>
<td>0 - 10 Sec.</td>
</tr>
<tr>
<td>32</td>
<td>Power Directional</td>
<td>Monitors power flow into PPL EU system.</td>
<td>0 - 5 Min.</td>
</tr>
<tr>
<td>51V</td>
<td>Torque-Controlled Time Overcurrent</td>
<td>Set to approximately 25% of the machine full load rating with the torque control being supplied by the 27 relay(s).</td>
<td>As per the requirement.</td>
</tr>
<tr>
<td>50/51</td>
<td>Time and Instantaneous Overcurrent</td>
<td>This is the phase overcurrent protection to monitor phase current flow on the high side of the transformer.</td>
<td>As per the requirement.</td>
</tr>
<tr>
<td>50/51N</td>
<td>Time and Instantaneous Overcurrent Neutral</td>
<td>This relay is connected to monitor the neutral current flow in the high side of WYE connected transformers. It is usually set to 1 amp secondary current.</td>
<td>As per the requirement.</td>
</tr>
<tr>
<td>59T</td>
<td>Time Delay Overvoltage</td>
<td>Set at 110% of nominal voltage.</td>
<td>0 - 1 Sec.</td>
</tr>
<tr>
<td>59I</td>
<td>Instantaneous Overvoltage</td>
<td>Set at 120% of nominal voltage.</td>
<td>0 - 0.160 Sec.</td>
</tr>
<tr>
<td>59N</td>
<td>Narrow Band High Accuracy Overvoltage</td>
<td>Set below 59I/59T; provides an alarm to generator operator and a trip after a delay (via Overvoltage 62L) of several minutes.</td>
<td>As per the requirement.</td>
</tr>
<tr>
<td>62</td>
<td>Auxiliary Timer (Short Time)</td>
<td>Used with 27I and/or 59I to produce 27T and/or 59T function.</td>
<td>As per the requirement.</td>
</tr>
<tr>
<td>62L</td>
<td>Auxiliary Timer (Long Time)</td>
<td>Used with 27N and 59N to provide several minute delay to allow plant operator to correct voltage deviation.</td>
<td>As per the requirement.</td>
</tr>
<tr>
<td>67</td>
<td>Directional Overcurrent</td>
<td>This is the IPR protection and is connected to monitor directional phase current flow on the high side of the transformer.</td>
<td>As per the requirement.</td>
</tr>
<tr>
<td>81O</td>
<td>Overfrequency</td>
<td>Typically set at 60.6 Hz.</td>
<td>0 - 0.160 Sec.</td>
</tr>
<tr>
<td>81U</td>
<td>Underfrequency</td>
<td>Typically set at 59.3 Hz for Generation less than 30kW.</td>
<td>0 - 0.160 Sec.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typically set at 57.0 Hz for Generation greater than 30kW.</td>
<td>0 - 0.160 Sec.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May be set between 59.8 to 57.0 Hz for large (greater than 30kW) units to coordinate with load shedding relays.</td>
<td>0 - 300 Sec.</td>
</tr>
<tr>
<td>DTT1</td>
<td>Direct Transfer Trip</td>
<td>Sends a signal from PPL EU Terminal A to trip generator.</td>
<td>As per the requirement.</td>
</tr>
<tr>
<td>DTT2</td>
<td>Direct Transfer Trip</td>
<td>Same as DTT1 except to Terminal B.</td>
<td>As per the requirement.</td>
</tr>
</tbody>
</table>
NOTE: For all installations, the preferred relays are microprocessor-based units which provide multiple protection and control functions. These relays provide multiple functions in one case as well as oscillographic and sequence of events capability. ALL microprocessor-based relays must be supplied with suitable communication software to allow transfer of data and settings from a computer, and must derive control power from a DC source. AC power supply to microprocessor based relays from the grid is not acceptable.

Use of a single microprocessor based relay has the potential to lose ALL protection upon failure. Therefore, if only one (1) microprocessor based relay is installed, the relay failure (or health) contact must be connected to isolate the generation from the PPL EU system upon failure of the relay. Installation of a second or backup relay eliminates the need for this trip, and is strongly recommended.

PPL EU will consider allowing POC relay (for existing 12 kV systems) to backup IPR relay and vice versa IF BOTH relays are provided with the suitable protective functions. Please contact PPL EU to discuss about this option.

3.8 POWER TRANSFORMER CONNECTIONS AND VECTOR DIAGRAMS

All three phase Generation must be isolated from PPL EU customers by a power transformer. For new three phase installations the **REQUIRED** isolation transformer is WYE-grounded high side (PPL EU). If a wye-wye configuration is used, the transformer must be solidly grounded on the low side. The transformer high side winding is to be specified for proper insulation to allow neutral impedance grounding. The need for neutral impedance grounding depends on the impact of the generation to the PPL EU system. It will not be necessary in all cases. Existing facilities which install generation will typically have a Delta high side and WYE low side transformer. Those will be accepted to PPL EU; however, additional high voltage protection may be required. Further, the generator sponsor should review the transformer connection and the impact on the connection of the generation equipment to the existing plant.

PPL System - 12 kV and Below

PPL employs a "C-B-A" phase sequence at voltage levels of 12 kV and below. Most references site an "A-B-C" or "1-2-3" sequence. For PPL, the equivalent would be "C-B-A" or "1-2-3."

PPL chose to connect the high side of delta-wye power transformers in the following manner in all divisions except the Lancaster Division.

A phase - H1 Bushing
B phase - H2 Bushing
C phase - H3 Bushing

For the Lancaster Division:

C phase - H1 Bushing
B phase - H2 Bushing
A phase - H3 Bushing

For all PPL divisions except Lancaster, the transformer connections noted above and the standard phase relationships and transformer terminal designations for three-phase power transformers as outlined in IEEE Standard C57.12.00-1993 result in a non-standard phase displacement of the low side voltage leading the high side voltage by 30 degrees.

For Lancaster Division, the transformer connections noted above and the standard phase relationships and transformer terminal designations for three-phase power transformers as outlined in IEEE Standard C57.12.00-1993 result in the low side voltage lagging the high side voltage by 30 degrees.
The below mentioned diagrams illustrate the transformer connections and angular displacements:

(1) C-B-A ROTATION

PPL 12 kV AND BELOW

C-B-A ROTATION

(2) H2 H1 H3

INDUSTRY STANDARD

X1 X2 X3

(3) H2(B) H1(A) H3(C)

LOW VOLTAGE LEADS

HIGH VOLTAGE BY 30°

(System).

a(X1) b(X2) c(X3)

(4) H2(B) H1(C) H3(A)

LOW VOLTAGE LAGS

HIGH VOLTAGE BY 30°

(Lancaster).

a(X3) b(X2) c(X1)
3.9 BASIC INSULATION LEVELS AND CLEARANCES

Customer equipment’s BIL is expected to coordinate with established PPL EU designs. In addition, NESC clearances are to be maintained. Minimum insulation levels for service voltage (higher levels are customer's option):

- 12 kV system = 110 kV BIL (open air)
- = 95 kV BIL (switchgear)

Electrical clearances (phase-to-phase, phase-to-ground, elevation above grade/road, etc.) of bus conductor and equipment in a substation shall, at a minimum, be designed to the National Electrical Code (NEC) and National Electrical Safety Code (NESC) requirements, latest code revisions, for the BIL insulation levels chosen.

Minimum phase-to-phase (centerline) spacing of point-of-contact air switches and tie air switch (if installed):

<table>
<thead>
<tr>
<th>Nominal System Voltage (kV)</th>
<th>Basic Impulse Level (kV BIL)</th>
<th>Disconnecting Vertical Break (inch)</th>
<th>Switches Side Break (inch)</th>
<th>All Horn Gap Switches* (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>95</td>
<td>30</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

3.10 VOLTAGE LEVELS AND VARIATION

The primary voltage levels on the PPL distribution system are as noted below:

<table>
<thead>
<tr>
<th>Nominal System Voltage (kV)</th>
<th>Voltage Range at Point of Interconnection High - Low (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.47</td>
<td>13.1 – 11.8</td>
</tr>
<tr>
<td>13.2 (Hershey Area – Check with PPL EU)</td>
<td>13.8 – 12.5</td>
</tr>
</tbody>
</table>

3.11 INSTALLATIONS INVOLVING 15 KV CLASS SWITCHGEAR

For Installations involving only 15 kV class switchgear (12 kV supply) with underground connections and fused POC protection, please refer to the REMSI instructions at website: REMSI (Rules for Electric Metering and Service Installation) and PPL Specification 6-09-199, titled “Installation Instructions for 12 kV 3 Phase Service Termination and Metering Compartments in Customer-Owned Switchgear Cubicles, Underground Supply”, for requirements.

3.12 GENERATOR ISOLATION BREAKER

This breaker is typically the main device that isolates the generation from the PPL EU system; this breaker could be the POC breaker (for existing system), generator breaker, or any other appropriate breaker (subject to PPL EU
review) between PPL EU point of interconnection and generator. It must be able to withstand 2 per unit voltage (minimum) across the open contacts. It should be equipped with breaker failure protection to provide an alternate means of isolation should the breaker fail to trip. It may be necessary to coordinate the breaker failure relaying with PPL EU protective relaying. SF-6 breakers require special consideration since loss of SF-6 gas pressure will reduce the breaker's dielectric capability and the ability to interrupt current. Consequently, loss of SF-6 gas shall initiate a local and a PPL EU SCADA alarm, and then trip the breaker before the gas pressure is too low to operate the breaker. The manufacturer's recommendations for the specific breaker will be carefully reviewed to determine if the suggested operation on loss of SF-6 gas will be acceptable on the PPL EU system.

3.13 TELEPHONE CIRCUITS

Telephone circuit requirements for generation installations vary depending on the size of the generator and how it is connected to the PPL EU power system. Any or all of the following may be implemented for any generation installation:

All phone lines (DTT and/or SCADA) must be available approximately one month prior to synchronism date (Generally only larger systems), following are the requirements:

- SCADA – Requires a dedicated 4-wire line (type FDDA).
- DTT – Requires a dedicated 4-wire line for each dual channel application (type PRDA).
- Voice grade - A voice grade phone line is required. In addition, PPL EU needs to be able to read the revenue meters daily. Therefore, a shared voice grade phone line is suitable for this function.
- Further, an extension phone should be located in the vicinity of the SCADA and DTT equipment.

PPL EU will provide specific information on the type and quantity of phone lines to be provided and typical protection requirements for the phone lines for each project. The local telephone company may have additional requirements.

All copper phone circuits, required by PPL EU (SCADA and/or DTT), must be equipped with telephone company approved high voltage isolating devices. See IEEE 487 latest version, and the local telephone company specific requirements. NOTE: these specialized phone lines tend to be long lead items, and may not be available in all locations. PPL EU may make a determination at the initial study phase to see if the required telephone services are available and suggest alternatives if they are not.

In addition telephone companies may have their own specific requirements. Some typical requirements are:

- IEEE 487 – “The dedicated cable should be routed in a well-drained insulated conduit, e.g., polyvinylchloride (PVC), within the station ground grid area.”
- IEEE 789 – “In the case of the dedicated communications cable leaving the station, it is recommended that this cable be installed in a continuous PVC conduit within the station and for at least 3 m (10 ft.) beyond the ground grid or the power station perimeter fence."
- IEEE 789 – “It is important that metallic conduits should not be used or extended outside the station grid.”
- Customer shall provide required site data to allow the telephone company to calculate the maximum Ground Potential Rise (GPR) voltage and the Zone of Influence (ZOI) at their High Voltage site and enable the telephone company to complete their design. Those calculations will also determine if customer site will be serviced by a copper entrance cable or a fiber optic cable. APPENDIX IV shows a sample information form typically requested by a telephone company, different telephone companies may request more or less information.
• Specific telephone company requirements at power stations (customer handout) – “Schedule 80 PVC conduit (suitable for cable pulling) from the HVP (High Voltage Protection) location to a point 10 feet (3 m) beyond the substation fence or ground grid.”
• Some telephone companies also specify the use of lightning arrestors for these installations.

3.14 SCADA
A PPL EU SCADA remote monitoring shall be required for generation installations equal to or above 2.5 MW, to allow PPL EU to remotely monitor:
• Status of all circuit breakers and motor-operated switches between the point of interconnection and the generator(s). This would include the high side breaker, low side breaker, and generator breaker.
• Three-phase MW and MVAr flows at the point of interconnection.
• Status of Unit AVR (Auto/Manual).
• Status of Power System Stabilizer if one exists (in/out).
• Station service analogs MW/MVAr on any and all station service (aux) transformers.
• Three phase voltages (A, B, C phases) on the collector bus.
• Frequency on collector bus.
• Hourly integrated MWh delivered to the PPL EU system.
• Hourly integrated MWh delivered to the customer facility.
• Status of the Direct Transfer Trip (DTT) and protective relay equipment.
• Alarm condition of various pieces of equipment which are considered critical.

A SCADA trip from PPL EU to the generator facility will be required. At the generator option, any of the following devices may be operated (tripped) by this SCADA trip signal, as long as it isolates generation from PPL EU system:

1. The high side breaker
2. The low side breaker
3. The generator synchronizing breaker (if different from 1 or 2 above).

NOTE: At some locations, operation of high side breaker may cause the generation to over speed. Below mentioned trips, with above mentioned SCADA trip, can be used in those types of installations to allow a controlled shut down of generator(s) by eliminating the fuel flow, or energy source to the turbine.

1. The unit Master Fuel Trip device
2. The Turbine Master lockout device
3. The Turbine Stop valves

UNIT TRIP SIGNAL

ALTERNATE RTU REQUIREMENTS FOR SMART GRID LOCATIONS
In the service areas where PPL EU has installed or is planning Smart grid capability, or automated line transfer provisions, a suitable RTU at the generation facility (Gen size dependent) will be required to provide monitoring and
control of the facility. This RTU device will typically communicate over a PPL EU supplied communication network.

PPL EU will make a reasonable effort to identify the need for an RTU within the normal review phase of a proposed generation project. However, with system upgrades, or with addition of generation facility in the vicinity, or because of operational concerns, a previously operating generation facility might need to install a RTU in order for PPL EU to improve the reliability of its supply lines using Smart grid capabilities.

When a PPL EU SCADA is required, PPL EU will supply typical drawings for SCADA equipment, as well as a list of the various inputs and outputs. Analog data will be provided by digital meters connected to the SCADA via a suitable communication network.

Installations below 10 MVA may be permitted to use the PJM Internet based SCADA for their installation. This option REQUIRES a fixed IP address and an “always on” internet connection. A ‘dial-up’ internet connection will not be suitable due to the random assignment of IP addresses. The use of the PJM SCADA in place of the PPL EU SCADA is subject to PPL EU review and approval.

For a PPL EU distribution line, multiple generators connections, up to an aggregated capacity of 2000 kVA, will be permitted without SCADA installation. Lines with generation capacity more than 2000 kVA will require SCADA installation at one or more of the generation locations. PJM offers an Internet based SCADA option that maybe suitable for units connected at 12 kV and below, where PPL EU determines that control (tripping only) is NOT required. If PPL EU determines that tripping control is required at the generator facility, then a PPL EU SCADA must be installed.

NOTE: Generation facilities shall only be monitored at the point of interconnection and the main high voltage circuit breaker.
4 IPP RESPONSIBILITIES

The list of IPP Responsibilities covered in this Section provides a list of activities that must be completed before the generation equipment can be operated in parallel with the utility system. This should not be considered as project sequence.

4.1 IPP RESPONSIBILITIES

<table>
<thead>
<tr>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Application for Parallel Generation (for small projects), or the PJM forms for large projects.</td>
<td>PPL EU Application for Parallel Generation or the PJM Generation manuals</td>
</tr>
<tr>
<td>Submit preliminary site drawings, including plan and elevation views, showing desired location and orientation of substation for PPL to provide design tensions for customer dead-end structure.</td>
<td>PJM Generation manuals</td>
</tr>
<tr>
<td>Provide Letter of Intent prior to the start of PPL Engineering (small project), or PJM procedures for large project.</td>
<td></td>
</tr>
<tr>
<td>Return signed Electric Service Contract (may be required)</td>
<td>PPL EU Application for Parallel Generation or the PJM Generation manuals</td>
</tr>
<tr>
<td>Submit customer proposed one-line diagram as described in the Section 9.2.1, include POC protection installations.</td>
<td>Point of Contact Protection & Control Requirements and *REMSI sketch as required, IPR requirements, Section 7.</td>
</tr>
<tr>
<td>Submit preliminary control drawings and specifications for PPL approval prior to ordering equipment.</td>
<td>Point of Contact Protection & Control Requirements and IPR protections requirements, Section 6.</td>
</tr>
<tr>
<td>Submit final control drawings incorporating required PPL changes for point-of-contact protection prior to ordering equipment.</td>
<td>Point of Contact Protection & Control Requirements.</td>
</tr>
<tr>
<td>For Overhead Services: Switch & Meter poles must comply with reference</td>
<td>Specifications 6-09-194, 6-09-197 & REMSI Sketches #30-#34 & REMSI Rules 7, 8, & 18.</td>
</tr>
</tbody>
</table>
Submit CT/PT/Meter location and drawings for Approval

Complete transformer data sheet and submit transformer drawings for review prior to ordering (kVA, connection, taps, impedance, primary/secondary voltages).

If applicable, inform PPL when intertie protective relay(s) are available for testing/setting.

Supply slide bar lock on substation gate and disconnecting device.

Submit switch, interlock schematic & details.

Return signed Electric Service Contract prior to the start of PPL construction (small projects); large projects are through the PJM process.

Provide payment of costs to PPL EU for 12 kV or lower service (small projects).

Submit final substation site location and orientation, horizontal and vertical survey control points, and phase orientation of transformer.

Provide power transformer certified test reports for compensated metering (%) exciting current, % impedance, core loss, full load copper loss.

Provide Bill of Material (major electrical equipment only)

Call PPL when ready for PPL billing metering (separate from POC equipment) CT/PT delivery.

Install PPL billing metering CTs and PTs per PPL Specifications.

Provide substation ground grid resistance test report per IEEE Std. 81.

Complete inspection requirements – independent electrical final one-line diagram. This includes all PPL EU required station and equipment inspections.

REMSI Rules 3, 7, 8, 13, 18.

Transformer Requirements (Section 5.6.1) and Physical & Electrical Design Requirements.

NOTE: PPL EU might need to removes these relays for bench testing.

Physical & Electrical Design Requirements.

*REMSI & Supervisor - Large Power Metering

Physical & Electrical Design Requirements.

REMSI Rule 19
☐ Provide as-built drawings for PPL EU file.

☐ Provide proof all POC and IPR protection is functional and tested prior to the energization of the facility.

* REMSI (Rules for Electric Metering & Service Installation).
5 SUBSTATION PHYSICAL ELECTRICAL AND EQUIPMENT REQUIREMENTS

5.1 SUBSTATION ORIENTATION
The location and orientation of the customer-owned substation must be coordinated with the PPL EU.

5.2 SUBSTATION LINE DEAD-END STRUCTURE
The customer shall provide a suitable free-standing or guyed structure to terminate PPL EU’s line(s). The structure can be steel, aluminum or wood and shall be designed to accommodate the tension and clearance requirements of the distribution.

5.3 GROUNDING REQUIREMENTS
The customer’s outdoor substation facilities must have an adequate grounding system to prevent hazardous step and touch potentials. The grounding system shall be designed in accordance with IEEE Standard 80, "Guide for Safety in AC Substation Grounding," latest revision, and shall include the following:

1. Substation shall have a perimeter ground ring approximately 3 feet outside the fence line.
2. All gate entrances, man and vehicular, shall have their stationary posts bonded to each other and to the swing panels. Stationary post bonding by connections to the perimeter ground ring is acceptable.
3. The perimeter ground ring shall be designed to accommodate the swing of the entrance gate.
4. All air switch operating mechanisms shall be bonded to the substation structure by a suitable flexible braid connection from the operating pipe (near the operating mechanism) to the structure. A connection shall be made from the structure (near the operating mechanism) to the ground grid.
5. Each mechanism shall also have an ABOVE-GRADE steel platform/grating bonded to both the operating pipe and the ground grid.
6. Substation yard surfacing (4-inch minimum layer of crushed stone or macadam) shall extend 5 feet beyond the substation fence line along all sides.

5.4 GROUND GRID TESTING
The customer shall have the substation grounding system tested for "resistance to remote earth" prior to making connections to the PPL lines and energizing the facility. The customer is responsible for arranging the test(s) and costs associated with such work. The tests shall be made in accordance with the "Fall of Potential" method as outlined in IEEE Standard 81, "Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System," latest revision.

All tests shall be conducted before any PPL shield wires, counterpoises and/or system neutrals are connected to the facility. If any external neutrals are connected before conducting ground testing, the results will yield false, lower value readings. Neutral(s) of any temporary construction power services must be properly isolated from the substation grounding system before tests are performed. The test circuit configuration shall be so arranged that no "sneak circuits" exist while performing the test.
The reference "current probe" (C2) must be driven at a point beyond the "extent" of the ground system under test to obtain meaningful results.

All ground resistance test results must be submitted to PPL for approval, and must include:

- Geometry of the test circuit showing relative positions/directions and distances between test and reference electrodes. An accurate sketch or field-marked location plan drawing is acceptable.

- Actual resistance measurements at several reference points including the "theoretical 62% point." Measurements shall be submitted as tabled values and graphically to illustrate the "plateau" and inflection points in the resistance curve.

PPL requires the effective resistance to remote earth of the customer's substation ground grid to be **five (5) ohms or less**.

5.5 POINT OF CONTACT SWITCHING DIAGRAMS AND NOTES

Please refer to “PPL EU POC REQUIREMENTS” for additional information.

5.6 EQUIPMENT AND MATERIAL

5.6.1 Power Transformers

The customer's power transformers must have WYE grounded-connected primary windings, with neutral insulation suitable for impedance grounding.

NOTE: Existing load customers, who are willing to connect generation to their existing facilities, may require installing additional protection equipment, if power transformer is high side delta connected.

Customer must contact PPL EU prior to ordering or specifying the main power transformer. Depending on the size, location on the PPL system, or other concerns, alternate winding configuration may be required.

Connection arrangement of the secondary windings is customer's option, but must be discussed with PPL EU to ensure PPL EU system protection and coordination is adequate.

The voltage taps should accommodate the voltage criteria discussed in Section 3.10. A PPL EU representative may be contacted to provide transformer tap recommendations prior to purchase and a desired tap setting at the specific location given the customer’s load characteristics.

Please refer to REMSI document for any additional information, which can be found at: REMSI (Rules for Electric Metering and Service Installation).

5.6.2 Circuit Interrupting Devices (CID) - Switches and Interrupter Accessories

The provided CID equipment must be capable of interrupting expected current flows. The following devices provide the physical means to disconnect and provide a visible break between customer-owned substation and PPL EU system:
5.6.2.1 Air switch – Gang Operated
Air switch; three-pole, gang-operated, with horn gap; manual swing handle, worm gear drive or motor-operated mechanism.

Please refer to REMSI document for any additional information, which can be found at: REMSI (Rules for Electric Metering and Service Installation).

5.6.2.2 Switch Interrupter Accessories
Interrupter accessories shall be installed on the point-of-contact switches as appropriate for the installation. These include, but are not limited to:

- Interrupter attachment (with whip interrupter) loop sectionalizing, line (bus) de-energizing, and transformer magnetizing current switching applications.
- Interrupter attachment (without whip interrupter) for loop sectionalizing (parallel switching) applications.

5.6.3 Fault Interrupting Devices (FID)
PPL EU 138-12 kV and 69-12 kV substations are designed to withstand fault currents of 20,000 amps. PPL recommends that customer switchgear and equipment be designed to handle this amount of fault current as a minimum. For actual fault duties at the customer’s supply location, please contact PPL.

If the customer elects to design their equipment to meet a lower maximum fault current than the 20,000 amps recommended design level then customer must meet the calculated fault duties supplied by PPL for their location, plus a suitable safety margin. Future system changes to the supply system may increase the fault duties at the customer’s location and any upgrades required to meet these increased fault duties will be at the customer’s expense.

The following devices are approved for generation interconnection protection in customer-owned facilities:

- Power Circuit Breaker – 12kV vacuum or SF6 insulating medium, single or three-tank style. Interrupting rating to be determined based on PPL EU’s criteria for the particular proposed installation.
- Circuit Switcher – 12 kV, three pole, 1,200 ampere continuous and 64 kA momentary ratings, 20 kA primary and 4 kA inherent-secondary interrupting ratings.

5.6.4 Insulator and Surge Arrester
Surge arresters must be connected to the LOAD side of the point-of-contact interrupting device. Location and quantity are to be determined by customer's engineering representative. Other locations must be reviewed with PPL EU before implementation.

In all situations, such equipment must comply with PPL EU Insulator coordination and Surge Arrester protection requirements.

Please refer to REMSI document for any additional information, which can be found at: REMSI (Rules for Electric Metering and Service Installation).
6 PROTECTION AND CONTROL REQUIREMENTS

Also refer to the “PPL EU POC REQUIREMENTS” for additional details.

6.1 BACKGROUND

The functional characteristics require to be implemented in an intertie protection schemes for generators connected to the existing 12 kV distribution system are:

- Fast operation by undervoltage relay to disconnect the generation facility for a supply line fault and isolate it prior to the first reclosure operation. This is required to prevent the generation from possibly sustaining the fault and thus causing the line potential test to be unsuccessful or to minimize the chance of an out-of-phase reclosure.
- Fast operation on overvoltage if overexcitation and/or ferro-resonance cause a rapid, severe voltage rise.
- For small units (less than 10kW), a simple, reliable, fail-safe system is considered important. The main emphasis is to assure disconnection on loss of source line. Tripping shall be initiated as directly as possible from the measured supply voltage with minimum reliance on interspersed devices.
- The interconnection relay system shall have the capability to withstand electromagnetic interference (EMI) environments (as per IEEE Std. C37.90.2, latest version) so that the influence of EMI shall not result in a change in state or misoperation of the interconnection system.

NOTE: Under no circumstance the IPR relays to trip the breaker through a PLC or other programmable device. The breaker must be tripped directly to avoid any additional time delay from an interposing programmable device. Auxiliary relay(s) can be used only IF ABSOLUTELY necessary. The trip signal may be MONITORED by a PLC or other programmable device to facilitate control functions at the IPP facility.

6.1.1 IPR Functional Requirements

- The intertie protective relay is intended to provide the same functionality as defined in IEEE Std. 1547, and as mentioned in Section 7 of this document.
- Large units, while interconnected, can have a significant impact on system voltage levels. Customer need to make sure that generation facility shall not actively regulate the voltage levels at the Point of Interconnection.
- Obtaining selectivity, to prevent false trips, for system faults not on the source line takes on greater importance.
- Larger units can impact a significant portion of the power system, and therefore, a high assurance is required for such large generation facilities that they will not operate in island mode while connected to the PPL EU System.

6.1.2 Interconnected Synchronous Generators - General

Synchronous generation facilities will require a dedicated Parallel Generation Intertie Protective Relaying.

6.1.3 Interconnected Induction Generators - General
Induction generation facilities will require a dedicated Parallel Generation Intertie Protective Relaying. If a capacitor is used to serve as the excitation source for an induction generator the capacitor must not be capable of remaining on the system with the generator(s) off line.

6.1.4 Inverter based interconnections

Inverters convert DC power to AC by means of electronic switching. Switching can be controlled by the AC voltage of the supply system (line-commutated) or by internal electronic circuitry (forced-commutated), or the newest type PWM (Pulse Width Modulation). Line-commutated inverters are generally not capable of operating independently of the AC supply system and, as such, cannot supply fault current or isolated loads. Forced-commutated and PWM inverters are capable of supplying fault current and may supply load independent of the AC supply system. All inverters will be expected to conform to the latest version of IEEE Std. 1547 and UL 1741.

Equipment like Solar arrays (photovoltaic), certain wind turbines, and microturbines, for example, generate their power at DC or high frequency AC and use inverters to convert this power to 60 Hz AC at a suitable voltage level. Units below 10 kW, which are in compliance with IEEE Std. 1547 and UL-1741, can be connected to the PPL EU system without any other additional protection. Facilities with more than 10kW generation capacity or locations using multiple inverters will be subject to PPL EU review, and may require additional external protection (IPR) equipment.

6.2 GUIDELINES

With the background information mentioned in Section 6.1, following intertie protection and control requirements need to be discussed:

1. Facilities connected to 12 kV lines MAY need DTT depending on the impact of the proposed generation on the PPL EU line and the source substation. The assessment will be done for the possibilities of islanding, and reclosing on other customers rotating equipment.

2. These facilities will be required to have POC (Point of Contact) protection and IPR (Intertie Protection Relay) protection. Care must be exercised when choosing fuses for the high side protection as under some circumstances, the IPP fuses may operate before PPL EU relaying for faults on the PPL EU system. PPL EU strongly recommends the use of a three phase fault isolation device (circuit breaker or recloser).

3. The IEEE 1547.1 and UL 1741 test procedures assess the operation of inverter at the TERMINALS OF THE INVERTER. However, the application of large inverter based generations require the use of one or more transformers to step-up the voltage from multiple inverters low voltage output (120 to 600 VAC) to the utility supply voltage level (12 kV). The inverters may not correctly control or maintain the required settings at the PCC as they do not have a direct connection (sensors, CTs, or PTs) to the PCC. See IEEE 1547, Section 1.2, second paragraphs, which states “The requirements shall be met at the point of common coupling (PCC), although the devices used to meet these requirements can be located elsewhere.” Per IEEE 1547.1 Testing Requirements, Section 5.2 “If the EUT senses voltage at a different point than the PCC with the area EPS or at the point of DR connection as specified in IEEE Std. 1547, it shall be tested under load in conjunction with any external isolation transformer supplied or required by the EUT manufacturer.” The IPP or the inverter vendor needs to provide additional information on this item.

4. The IPP or the inverter vendor is requested to supply a copy of the UL1741 test report as well as any documentation of the effects or interactions of multiple units operating in parallel on the IEEE settings and operating times.

5. At larger facilities, high voltage CTs and PTs will be required for the IPR relaying as well as the PPL EU SCADA and revenue metering. In most cases the PTs can be supplied with dual windings to support both
the protection equipment as well as the revenue metering requirements. Separate CTs will be needed for protection and metering.

ATTENTION: PTs at the 12kV voltage located on the PPL EU side of the POC circuit breaker MUST have adequate high voltage fusing to protect PPL distribution facilities from equipment failure.

6. The IPP or the inverter vendor will need to comment on the capability of the proposed equipment to REGULATE the power factor of the overall facility as measured at the PCC per PPL EU requirements. The equipment shall need to be able to adjust the VAr flow with respect to the real power level. While IEEE 1547 Section 8.1.1 states “The DR shall not actively regulate the voltage at the PCC. The DR shall not cause the area EPS service voltage at other local EPSs to go outside the requirements of ANSI C84.1-1995, range A.”, the second sentence will typically be the requirement for LINE connected facilities.

7. The IPP must provide a one line diagram with sufficient detail to show all transformer connections, and the location and connection of all of the above mentioned equipment.

8. The IPP or the inverter vendor must supply full electrical specifications for the inverters, including but not limited to the fault current levels and duration.

9. PPL EU employs automatic reclosing on its distribution level electrical systems. The initial reclosure might be faster than the IEEE 1547 anti-island settings of 2 seconds. The IPP or the inverter vendor must provide data or other information on the out of phase reclosing that could potentially exist with other customer’s rotating equipment connected to the same area EPS. PPL EU will typically modify its facilities to include synch. check relaying to avoid an out of phase reclosure.

NOTE: The above items are specific technical requirements identified for generation interconnection equipment. PPL EU shall notify in other requirement(s) that may be necessary after a detailed assessment, in Method of Accommodation (MOA) or Method of Supply (MOS) document.

Harmonics and distortion of the voltage or current, generated by the generator-inverter combination, must not exceed PPL EU harmonic distortion limitations (as per IEEE Std. 519). Under no circumstances will these installations be allowed to inject DC current above the IEEE 1547 limits into the PPL EU system.

Due to the rapidly changing products for providing various protection requirements, the generator and PPL EU will discuss current offerings, and come to an agreement on one or more suitable devices.

6.2.1 12 kV line Recloser Modifications

PPL EU will review the line loading in various line sections to determine the probability of forming an unintentional island with the proposed generation. The result of this study will be a list of reclosers that do or do not need to be modified due to the proposed generation.

6.2.2 Temporary Installations

Temporary installations are those installations where the generation is rented or installed for specific period of time, with possibility of being removed and replaced with different equipment, and is not permanently connected to the PPL EU system. These generations are usually installed in campus type facilities, usually limited to less than 200 hours of operation per year.

The following items should be considered for these applications:

1. The IPR relaying should be installed in such a manner that it will NOT need to be removed or re-installed with the generation.
2. Consideration should be given to limiting or eliminating the connections between the generator controls (tripping, closing, and auxiliary switches), and the use of a single breaker to isolate multiple generators.

3. IEEE 1547 requirements should be met by the relaying, independent of the type of generation installed.

4. For installations above 2.0 MW, PPL EU will generally need to know WHEN the generation is operating via SCADA, revenue metering, or a PJM Internet based SCADA system.

5. The entire design of the facility should take into consideration the probability of changing out the generation equipment on a yearly basis WITHOUT the need to make changes to the PPL EU required IPR cabinet.

6.2.3 Generator Relay Settings

PPL EU will request specific setting information on generation relay which will act to trip the generator. The purpose of this request is to review the protection settings to ensure proper coordination of the generation relays with PPL EU operating practices. It is, however, the responsibility of the generator owner to apply generator protective relay settings that must provide adequate protection to meet IEEE guidelines and other regulatory body requirements.

NOTE: Changes in the IPR settings might be required in future if PPL EU network configuring or fault level change.

6.2.4 PPL Control Switch

All installations must include a PPL Control switch (PCS), as mentioned in Section 3.3.6, to be located in the Intertie Protective Relay (IPR) cabinet. The PCS must be wired to trip the generator isolation breaker and to block closing unless the switch is placed in the "Normal After Close (NAC)" position. This PCS switch shall provide the close permissive signal, but it will not close the breaker directly.

6.3 GENERAL – CTs, VTs, METERING, ETC.

The preferred location for the source of relay potentials and currents is the high side of the generation power transformer. For all single phase and three-phase installations up to 100 kVA where use of high-side VTs and CTs is uneconomical or impractical, these devices may be located on the low-side of the generation power transformer. This configuration must be reviewed and approved by PPL EU and, in general, will only be permitted if service to other PPL EU customers will not be impacted.

All installations must include:

- An ammeter (for single-phase installations), or an ammeter and a switch to monitor all three phases (for three-phase installations), or suitable 3 phase digital display.

- A digital multi-function meter, transducer, or relay, where a PPL EU SCADA is to be installed. This device will be used to collect the analog data for the SCADA, and to provide local readings. **Contact PPL EU for current equipment requirements.**

- A visible SEMAPHORE on each of the breaker between the generator and the PPL EU system to determine the actual status of the breaker (open or close).

To prevent a possible undesirable out of phase connection of the generation to the PPL EU system, synchronous generators shall require a synchronism check relay (25), and Induction generators or Inverter shall require a voltage check relay (27). These devices must be located in the IPR cabinet and connected to prevent closing of the generator circuit breaker, or other breaker as agreed upon by PPL EU, for:

- An out-of-phase condition.

- A de-energized line condition (PPL EU supply breaker open).
• A de-energized synchronous generator condition.
• An energized induction generator condition.

When a synchronism or voltage check relay is required, the customer must install a relay accuracy class voltage transformer on the generator side of the generator breaker, or other breaker as agreed upon with PPL EU, to supply potential to this relay.
7 CLASSIFICATION OF INSTALLATIONS

The following general classifications are done on the basis of major operating characteristics and protection requirements for different types of generation installations. Each classification gives a general view of different type of generation facility expected to be installed on the PPL EU system (12kV or below). A summary of these classifications is shown below:

TYPE 1D Single phase, any type of generation, up to 200 kW.
TYPE 2D Three phase, any type of generation, up to 3000 kW.
TYPE 3D Three phase, any type of generation, limit on generation shall be based on system impacts.
TYPE 5D Three phase, any type of generation, momentary parallel for less than 5 minutes, and limit on generation capacity shall be based on system impacts.
TYPE 6D Three phase, campus type installations, with no intentional power flow into the PPL EU system. Limit on generation capacity shall be based on system impacts.
TYPE 7D Direct substations or switchyard connected facilities – typically large facilities at 12 kV.

NOTES: Following requirements shall be applicable to all TYPES:

NOTE 1. The safety switch (G), as mentioned in Section 3.3.16, must be lockable in the open position, and must be located between the generator and the PPL EU metering point, and provide a visible break.

NOTE 2. Contact PPL EU for specific metering requirements.

NOTE 3. When more than one (1) breaker is installed between the generator(s) and the PPL Point of Interconnection, the IPR must trip one of the breakers which must isolate all generator units from PPL EU system. The choice of breaker, to be tripped, shall be determined by the operation of the plant and PPL EU reclosing practice, as per Section 3.12.

NOTE 4. For all installations the preferred relays are microprocessor-based relays. These relays provide multiple functions in one case as well as oscillographic and sequence of events capability. All microprocessor-based relays shall be ordered with suitable communication software to allow relay settings and other data transfer to and from a Computer.
7.1 TYPE 1D

A Type 1D installation, shown in Figure 1, covers single-phase inverter, synchronous or induction generators up to 200 kVA on a distribution circuit. These installations are characterized as:

- Having a fuse (D) specified by PPL EU as the Point of Interconnection device, which also provides the visible break for safety.
- Having a safety switch (G) lockable in the open position, to block the generator from operation.

RELAY REQUIREMENTS

For Induction and Synchronous generation protection will be required to meet IEEE 1547 requirements. At a minimum this will include over/under voltage, over/under frequency, directional power and sync. check functions.

Inverter based generation meeting IEEE 1547 / UL 1741 are acceptable, up to the 200 kVA limit, without additional protection. However, if there are multiple inverters involved then additional review will be necessary and may result in additional protection requirements.

The relays above are to be located in the IPR cabinet. The preferred location for the current and voltage transformers is on the high side of the power transformer. However, connection to the low side of the power transformer may be possible, subject to PPL EU review.

GUIDELINES

- See REMSI rules #7 and #8 for details on fused disconnect/disconnect switch.
- AC powered shunt trips are not acceptable for tripping/isolating the generator unless an appropriate UPS unit is installed.
- An AC undervoltage trip should be included on the generator isolation breaker if normal tripping is by a DC shunt trip.
- See Table 1 in Section 3.7 for relay function definitions.
- Refer to the REMSI documents for metering requirements.
TYPE 1D INSTALLATION

A TYPICAL TYPE 1D GENERATION FACILITY

FIGURE 1 TYPE 1D GENERATION INTERTIE REQUIREMENTS
7.2 TYPE 2D

A Type 2D installation, shown in Figures 2, covers three-phase inverter, synchronous and induction generators up to 3000 kVA (aggregated capacity), connected to a distribution circuit. These installations are characterized as:

- Being connected through a three-phase transformer.
- Having fuses or a circuit breaker as the Point of Interconnection device.
- Having a safety switch (G), lockable in the open position, to isolate generation from PPL EU system.

RELAY REQUIREMENTS

For Induction and Synchronous generation protection will be required to meet IEEE 1547 requirements. At a minimum, this will include over/under voltage, over/under frequency, directional power and sync. check functions.

Inverter based generation unit meeting IEEE 1547 / UL 1741 is acceptable up to the 200 kVA limit without additional protection. However, if generation capacity exceeds 200kVA or there are multiple inverters involved then additional review will be necessary which may result in additional protective requirements.

The required relays shall be located in the IPR cabinet. The preferred location for the current and voltage transformers is on the high side of the power transformer. However, connection to the low side of the power transformer may be possible, subject to PPL EU review.

GUIDELINES

- See Table 1 in Section 3.7 for relay function definitions.
- The protective relays shall trip the appropriate generation isolation breaker between the generator and PPL EU point of interconnection.
- When a circuit breaker is utilized as the intertie protective device, it can be utilized to provide the visible break for safety, as long as it is lockable in racked out position.
- See REMSI rules #7 and #8 for details on fused disconnect/disconnect switch.
- AC powered shunt trips shall not acceptable for tripping the generator isolation breaker unless an appropriate UPS unit is installed to supply AC power.
- An AC powered undervoltage trip should be included on the generator isolation breaker if normal tripping is by a DC shunt trip.
TYPE 2D INSTALLATION

Fuses must be installed on customer VTs on the PPL side of the POC CB.

FIGURE 2 TYPE 2D GENERATION INTERTIE REQUIREMENTS
7.3 TYPE 3D

A Type 3D installation, shown in Figure 3, covers three-phase inverter, synchronous, and induction generators greater than 3000 kVA (aggregated capacity), connected to a distribution circuit. These installations are characterized as:

- The PPL EU line is a radial line.
- Being connected through a three-phase transformer.
- Having a high-side circuit breaker.
- Having a safety disconnect switch, lockable in the open position, to isolate generation from PPL EU system.

RELAY REQUIREMENTS

Type 3D installations normally require DTT which shall ensure fast tripping of the generator upon receipt of a trip signal from remote source(s). Also, SCADA is required at these installations to allow PPL EU to remotely monitor electrical conditions at the generation facility and to provide a means for PPL EU to remotely disconnect the generation from the PPL EU system in the event of a system emergency.

GUIDELINES

- A three-phase voltage check relay supervises reclosing of substation circuit breaker "A." (This will delay reclosing until the generation is isolated.
- The main transformer must have a fully insulated WYE winding (high side) suitable for impedance grounding.
- A SCADA trip from PPL EU to the generator facility will be required. At the generator option, any of the following devices may be operated (tripped) by SCADA trip signal:
 - The high side breaker
 - The low side breaker
 - The generator synchronizing breaker (if different from 1 or 2 above).
Fuses must be installed on customer VTs on the PPL side of the POC CB.

FIGURE 3 TYPE 3D GENERATION INTERTIE REQUIREMENTS
7.4 TYPE 5D

In a Type 5 installation, the generation is allowed to parallel with the PPL EU system for a limited period of time (not greater than 5 minutes), but not inject any power to PPL EU system. Generally, load of this type of facility is larger than the installed generation capacity, and therefore, no excess power to send to PPL EU system.

NOTE: This type is different from a make-before-break transfer switch. A make-before-break transfer switch is expected to parallel for less than 100 milliseconds, and does not have a mode that will maintain the parallel operation position of the switch. For applications involving transfer switches, please contact PPL EU for approval of the proposed transfer switch.

For TYPE 5D installation, following requirements must be met (at a minimum):

1. The generator will be required to supply an IPR cabinet with (at a minimum):
 i. Synchrocheck relay (supervises closing of CB used to parallel customer facilities with PPL EU system when the generator is operating). The need for synchrocheck supervision will be evaluated on a case-by-case basis, and will depend on size of the generator and potential impact on the PPL EU system.
 ii. Undervoltage relay for each phase, or a single three phase relay.
 iii. Sensitive reverse power relay (Connected to measure power into the PPL EU system at the utility/customer point of interconnection).
 iv. Timer activation when the generation parallel with PPL EU system, and shall trip the generation isolation breaker, if paralleling time exceeds 5 minutes or predetermined duration to separate the generation from PPL EU system. Timer logic must be hardwired (not controlled by any intermediate device such as a programmable logic controller).
 v. PPL EU control switch (as mentioned in Section 3.3.6) and associated indication lights.
 vi. Ammeter and switch.

 NOTE: Depending on the exact location, size, and type of generation, additional relay(s) may be required. Intertie relays that initiate tripping of the generator need to be in service when the generator is paralleled with the PPL EU system.

2. Due to the minimal relaying, PPL EU will require a "Fail-Safe" AC powered undervoltage trip control scheme or a DC powered control shunt trip scheme with a backup AC undervoltage trip.

3. The generator will not be allowed to send any power into the PPL EU system.

4. The generator must supply a complete set of drawings and system information for PPL EU review and approval.

5. PPL EU will assume operational control of the relay(s), control switch, etc. in the IPR cabinet.

6. PPL EU will specify the amount of time for which the generation can be allowed to operate in parallel with the PPL EU system.
7.5 TYPE 6D

Campus type installations where one or more generators are installed at various locations within a facility

The TYPE 6D installation may be similar to any of the previously discussed types of installations, with a condition of no power flow back to PPL EU system. These installations will contain one or more reverse power relays that will be programmed to detect power flow into the PPL EU system. If reverse flow is detected, a suitable device shall operate to immediately isolate generation from the PPL EU system.

This installation tends to be part of campus style facilities, and therefore do not lend them to a standard design. The customer is required to submit detailed one line drawing(s) to discuss which devices should operate to isolate the generation from PPL EU system, and the appropriate locations of the various sensing components (CTs, PTs, and the relaying). PPL EU will review the proposed design, and shall comment as necessary.

The device to be used to isolate the generation shall be proposed by the customer depending on the operation of their facility.

Depending on the possible impact of the generation on the PPL EU system, additional functions as previously listed for TYPES 1D to 3D may be required in addition to the reverse power relay.
7.6 TYPE 7D

Large Units connected directly to distribution substations, via express distribution feeder(s), where generation can be isolated from the PPL EU system at substation level.

This type of installation shall be assessed on case by case basis. Please contact PPL EU for further details with proposed generation facility design.
8 RELAY TEST PROCEDURES

The Relay Test Department at PPL EU provides technical field support for all customer IPR installations involving systems with protection relays. They should be included in the early review of customer drawings, along with other key PPL groups, to help the IPP to develop an optimal and effective design.

As the work progresses to the physical construction stage, Relay Test participates in the initial "on-site" job meeting and develops a work plan to support following tests which are required to connect the customer to the PPL EU system:

1. Relay acceptance tests and calibration of settings (issued by PPL EU Protection and technical Support).
2. Current Transformer tests.
3. Current Transformer saturation tests
5. Potential circuit verification.
6. Control circuit tests.
7. In-service verification tests.
8. Plus any other issues related to the POC and IPR systems.

The above mentioned item #2 to #6 can be done by the customer’s contractor and witnessed by PPL EU Relay Test personnel, or completed by Relay Test with customer participation as appropriate.

PPL Relay Test personnel will require a written commissioning procedure proposed by the IPP’s contractor. This procedure should cover a step-by-step listing of the tests required to ensure that the IPP’s schemes operate properly. This commissioning procedure should be supplied to PPL EU at least two weeks prior to the scheduled in-service testing process. The generator shall provide a detailed procedure of the initial phase-out and synchronization to PPL EU, which must be reviewed and approved by PPL EU prior to actual synchronization.

Customer billing for work done by PPL EU outside of the "core working hours" is described in Division Practice Instructions (DPI) #204. The customer should be aware of this policy.

PPL EU will observe verification of the correct operation of synchronizing circuit, for synchronous units.

The generator operator is to verify the phase rotation of the generator. Please note that in MOST cases the PPL EU system rotation is C-B-A (as mentioned in Section 3.8). The generator is expected to verify the specific rotation at their facility, with PPL EU.
9 DRAWING REQUIREMENTS

ALL drawings must be suitable to be scaled to “D” size (24 inches by 36 inches), except for reports, word or excel documents. Reduced size drawings are NOT acceptable.

9.1 DRAWINGS AND INFORMATION FOR REVIEW

Equipment that is IEEE 1547 compliant will have greatly reduced drawing requirements. It is expected that most if not all of the required protection will be built in to the generation equipment. Under these circumstances, PPL EU will request copies of the manufacturer’s drawings, and any drawings showing external inputs to the protective equipment, for example CTs or PTs. If the Generation operator has decided to operate a different breaker then that supplied with the generation equipment, the drawing showing the controls and interlocks to this breaker will also be requested.

PPL EU will require the following drawings/information for review and acceptance:

NOTE: A final set of “as built” drawings are required to be submitted to PPL EU within 90 days of initial synchronization of the generation. Failure to submit such drawings may result in the generator not being able to interconnect with the PPL EU system until the ”as built” drawings are received.

- One Line Diagram *
- Three Line Diagram
- Distribution Line Dead-end Structure (proposed/final)
- Plan and Elevation Views (electrical arrangements only)
- Grounding Plan and Details
- Ground Test Report (when customer substation is complete but before PPL supplies are connected) *
- Bill of Material (major electrical equipment only, including switch, protective device, transformer, surge arresters, relays, etc.) *
- Switch Interlock Schematic and Details
- Three Line Potential Elementary
- Three Line Current Elementary *
- Control Elementary Diagram(s) of each FID * (Breaker or Circuit Switcher)
- Power Transformer Certified Test Report(s)
- Front view showing IPR Relay(s) and Control Equipment *
- A detailed written description of Point of Contact (POC) relay and Intertie Protective Relay (IPR), and control functions and description of operation. The generator is to provide a description of operation of the facility including:
 - Point of contact breaker or low side circuit breaker
 - Generator circuit breaker
 - Controls associated with the above circuit breakers
- Any other equipment that connects to the above breakers
- System interlocks
- Direct transfer Trip equipment, if required
- General description of the operation of the facility, including operational modes (parallel, isolated, peak shaving, etc.)
- Any other unique facilities or operational modes
- High side breaker isolation procedure, if a SF-6 high side breaker is used*
- Commissioning procedure *
- IPR relay instruction book *
- IPR CT saturation study, if accuracy class less than C400 *
- Auto transfer switch make and model (if customer-owned backup generation is installed)

* Denotes drawings which must be supplied for every type of customer facility. Other drawings must be supplied as applicable.

9.2 CONTENTS OF DRAWINGS

The customer's IPR drawings shall contain the following information:

9.2.1 One Line Relay Diagrams

This diagram shows the customer's substation functional arrangement. All the equipment shall be shown using single-line diagram and standard symbol notations (per latest ANSI/IEEE Standard 315; titled Graphic Symbols for Electrical and Electronic Diagrams). This diagram shall include:

- Equipment names and/or numerical designations for main Fault Interrupting Devices (FIDs), air switches, power transformers, and associated POC/IPR relays and control devices shall be shown to match with PPL line designation. (Note: The required information will be provided by PPL after the customer submits a preliminary one line diagram.)
- Power Transformers - Nominal kVA, nominal primary/secondary and tertiary voltages, vector diagram and impedance.
- Instrument Transformers - Voltage and Current that supply the POC/IPR relaying.
- Lightning Arresters/Spill Gaps/Surge Capacitors - Ratings.
- Air Switches - Indicate status normally open with a (N.O), normally closed with a (N.C.) and type of operation manual or motor.
- Safety Switch - Continuous ampere and interrupting ratings.
- FIDs - Interrupting rating, continuous rating, operating times.
- Transformer Fuses - Size, type, manufacturer, location.
- Grounding.
- Generator(s) - Include type, connection, kVA, voltage, current, phasing, rotation, PF, etc.
- Point of Interconnection to PPL EU (12 kV) and phase identification. NOTE: if the generation phase sequence is different than the PPL EU phase sequence, both must be shown on this diagram.
9.2.2 Current Elementary Diagrams

This diagram shall include:

- Terminal designations of all devices - Relay coils and contacts, switches, transducers, etc.
- Relay Functional Designation – Per ANSI/IEEE standard C-37.2-1991. The same functional designation shall be used on all the drawings showing the relay.
- Complete relay type such as "SEL 321", etc., and the relay range.
- Range and settings of timing relays.
- Switch developments and escutcheons shall be shown on the drawing where the majority of contacts are used. Where contacts of a switch are used on a separate drawing, that drawing should be referenced adjacent to the contacts in the switch development. Any contacts not used should be referenced as spare.
- All switch contacts are to be shown in the open position with each labeled to indicate the positions in which the contacts will be closed.
- Switch contacts shall be referenced to the switch development if development is shown on a separate drawing.
- Isolating points (States sliding links, test switches, etc.).
- Grounding of CT cables.
- All other circuit elements and components with device designation, rating, and setting where applicable.
- Current Transformers - Polarity marks, rating, tap, ratio, and connection.
- Auxiliary CT ratios, connections and polarity, winding current rating, and arrows to indicate assumed current flow.
- Phase designations and rotation of both PPL and customer.
- Cable connection number or wire designation.

9.2.3 Potential Elementary Diagrams

This diagram shall include:

- Terminal designations of all devices – relay coils/contacts, switches, transducers, etc.
- Relay functional designation – per ANSI/IEEE standard C-37.2-1991. The same functional designation shall be used on all the drawings showing the relay.
- Complete relay type such as "SEL 321", etc., and the relay range.
- Relay contacts shall be referenced to the drawing where coils are shown, provided coil are shown on a separate drawing.
- Relay contacts should be shown with each referenced to the drawing where they are used. Contacts not used should be referenced as spare.
- Range and settings of timing relays.
- Switch developments and escutcheons shall be shown on the drawing where the majority of contacts are used. Where contacts of a switch are used on a separate drawing, that drawing should be referenced adjacent to the contacts in the switch development. Any contacts not used should be referenced as spare.
• All switch contacts are to be shown in the open position with each labeled to indicate the positions in which the contacts will be closed.
• Switch contacts shall be referenced to the switch development if development is shown on a separate drawing.
• Isolating points (States links, test switches, etc.).
• Grounding of cables.
• All other circuit elements and components with device designation, rating, and setting where applicable.
• Coil voltage for all auxiliary relays.
• Potential transformer – nameplate ratio, polarity marks, rating, primary and secondary connections.
• Phase designations and rotation of both the utility and customer.
• Current ratings and designation of all fuses.

9.2.4 Control Elementary Diagram

Control elementary diagrams are to be functionally complete schematics. They should be as simple and uncluttered as possible, and shall contain the following information:

• Terminal designations of all devices – relay coils and contacts, switches, transducers, etc.
• Relay functional designation – per ANSI/IEEE standard C-37.2-1991. The same functional designation shall be used on all the drawings showing the relay.
• Complete relay type such as "SEL 321", etc., and the relay range.
• Range and settings of timing relays.
• Switch developments and escutcheons shall be shown on the drawing where the majority of contacts are used. Where contacts of a switch are used on a separate drawing, that drawing should be referenced adjacent to the contacts in the switch development. Any contacts not used should be referenced as spare.
• All switch contacts are to be shown in the open position with each labeled to indicate the positions in which the contacts will be closed.
• Switch contacts shall be referenced to the switch development if development is shown on a separate drawing.
• Isolating points (States links, test switches, etc.)
• All other circuit elements and components with device designation, rating, and setting where applicable.
• Cable connection number or wire designation.
• Device auxiliary switches (FIDs, contactors) should be referenced to the drawings where they are used.
• Any interlocks; electromechanical, key, etc.
• Coil target ratings; on dual ratings underline the appropriate tap setting.
• Complete internals for electromechanical protective relays. Solid-state relays may be shown as a “black box,” with power supply and output connections, but manufacturer’s instruction book number shall be referenced and terminal designations shown.
• DC fuses protecting the relaying and FID’s control circuit shall be monitored for blown fuse or open circuit with a yellow indicating light.

• The trip coils of lockout relays should be monitored.

• The coils and contacts of all timers and lockout relays shall be wired through States links or equivalent terminal blocks to provide isolation for testing.

9.2.5 Front View Diagrams
This diagram will show the physical arrangement of all the control and protective equipment for the IPR relaying and shall contain the following information:

• Nameplates shall be provided for all switches, lights and hand reset lockout relays for the purpose of identification.

• The IPR relaying shall be mounted and grouped in such a way as to be clearly differentiated from the other customer's relaying. The IPR relaying may be located on a separate area within a relay panel housing other customer's relays.

• The IPR relaying shall be mounted on the switchboards in such an order that equipment associated with the various phases will be in A-B-C (PPL phase names) order from top to bottom or from left to right when facing front of panel on which they are mounted.

9.3 DRAWING APPROVAL PROCEDURES

• The IPP must submit preliminary IPR relay(s) drawings for PPL review and acceptance. These drawings must be submitted before the customer's equipment is ordered to ensure that it meets PPL EU requirements.

• The IPP must submit final IPR relay(s) drawings for PPL review and acceptance before customer’s facilities connect to the PPL EU system, and placed in-service. PPL EU will not be held responsible for possible delayed connection of customer’s facilities if drawings are not received in time for review.

• The type of drawings submitted must be according to the list described in Section 9.1.

• All drawings submitted to PPL for acceptance must contain complete information as outlined in Section 9.2.

• PPL will review customer's drawings and provide comments within 30 working days from the day a complete set of required drawings and information are received by PPL EU.

• Specific Grading Plan, Foundation Plan, Foundation Details, Conduit Plan, Structural Steel Assembly, and Structural Steel Fabrication Detail drawings do not require PPL EU review.

• The responsibility of detail and correct design lies with the customer. Neither PPL nor any person acting on behalf of PPL:
 • Assumes any responsibility for correctness of design, drawings, installation, or operations.
 • Assumes any liability with respect to the use of, or damages resulting from the use of, any comments disclosed in this document or in any other PPL correspondence with the customer.

9.4 FINAL AS-BUILT DRAWINGS
The customer must provide two (2) copies of the As-Built drawings listed in Section 9.1. Also include copies of any and all inspection certificates with the copies.
The 'Final As Built' drawings can be provided in:

- Hard copy
- Auto CAD format
- PDF format

If providing hard copy, the text must be legible. For example, a 'D' size Drawing (22x34 inches) cannot be submitted as a 'C' or 'B' size final drawing.

NOTE: final “as built” drawings shall be required to be completed within 60 days of the initial synchronization of the generation.
10 LIST OF APPLICABLE STANDARDS

This document will be applied in conjunction with other industry standards pertaining to generation and PPL EU intertie installations:

- IEEE standard C62.41.2, or latest version, IEEE recommended Practice on Characterization of Surges in Low Voltage (1000 V or less) AC Power Circuits.
• ANSI/IEEE C57.105-1978 (R1992), IEEE Guide for Application of Transformer Connections in Three-Phase Distribution Systems

Generation installations certified to be compliant with IEEE 1547.1 will generally be accepted as designed. In these cases, an IPR (Intertie Protective Relay) cabinet will not be required, as the required protective functions will be included in the generation package. IEEE 1547 is limited to Distributed Resource [generation] installations of 10 MVA or less for a single installation and 10 MVA or less for multiple generator installations on a single line or substation. For the PPL EU system, most of these installations will be at 12 kV. PPL EU will accept IEEE 1547.1 certified generators for parallel operation on its system up to 2.0 MW, with no additional system modifications. However installations above this limit will be reviewed to determine if additional protection, beyond that provided by IEEE 1547 is required.

The PJM Small Generation (0 to 2.0 Mw) interconnection requirements will be used in place of the PPL EU for facilities in this range AND UNDER THE JURISDICTION OF PJM. Units in this range, but not under PJM jurisdiction will be classified as Inverter, and units failing the screens will be classified as TYPE 1, 2, 3 or 4 as appropriate.

CERTIFIED equipment will be tested and certified by a NRTL (Nationally Recognized Testing Laboratory) to IEEE 1547.1-2005 (or the latest version) All inverters to be used for connecting generation to the PPL EU system are required to be certified to UL1741 and IEEE 1547. The term certified is understood to indicate a NRTL has tested the device to the appropriate standard, in this case UL1741 and IEEE 1547. Any inverter not meeting the NRTL certification will either not be allowed to connect to the PPL EU system or will be required to install suitable external protection equipment to provide the same level of protection. Further, the inverter vendor must provide upon request copies of the certification of the inverter equipment from the NRTL. Self-certification or certification by a third party that is not listed on the OSHA web site will not be accepted.

• NEMA MG-1-1998, or latest version, Motors and Generators, Revision 2 (or later).
• NEC 2005 or latest version.
• NFPA 70 Nation Electrical Code.
APPENDIX I – DETAILS FOR PPL EU CONTROL SWITCH (PCS)

Below is a TYPICAL control switch development showing the required functions. This information is taken from a General Electric type SB-1 switch, but alternative suppliers with the same functionality shall also be acceptable.

The switch is to have a PISTOL grip handle, with a target (or flag) indicator, and to be spring return from the close to the normal position and from the trip to the normal position. The target (or flag) will indicate RED for the Normal After Close (NAC) position, and GREEN for the Normal After Trip (NAT) position. The positions will be Trip, Normal, Close, from left to right when viewed from the front of the switch. The Trip and Close position should be approximately 45 degrees off of vertical, and the Normal position will be the vertical position.

<table>
<thead>
<tr>
<th>Contact</th>
<th>#</th>
<th>Trip (1)</th>
<th>NAT (2)</th>
<th>NAC (2)</th>
<th>Close (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- - - 1</td>
<td>1C</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- - - 2</td>
<td>2C</td>
<td>2</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>- - - 3</td>
<td>3C</td>
<td>3</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>- - - 4</td>
<td>4C</td>
<td>4</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>- - - 5</td>
<td>5C</td>
<td>5</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>- - - 6</td>
<td>6C</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- - - 7</td>
<td>7C</td>
<td>7</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>- - - 8</td>
<td>8C</td>
<td>8</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

FRONT VIEW: ESCUTCHEON ENGRAVING:

1. TRIP
2. □
3. CLOSE

□ NOTE: The Normal After Trip (NAT) and Normal After Close (NAC) position are not engraved.
APPENDIX II – ITEMS TO BE DISCUSSED DURING THE PROJECT

This is a list of items that generally need to be addressed during a typical project. It is NOT all inclusive and is provided as a guide only.

ELECTRICAL INSPECTION
As required by local ordinances, authority having jurisdiction or other PPL EU requirements to meet the NERC FAC-001 Standard.

PLANT OPERATION
The generator should meet with PPL EU to discuss the appropriate breaker to be tripped in abnormal/fault situations, and how the generator will maintain critical services during extended line outages.

ALTERNATE SUPPLY OR TWO LINE SUPPLY
Check to see if the generator requires an alternate supply of power to aid in powering the plant, or to allow operation during outages of the normal source.

POC BREAKER CONTROLS
Determine how the POC/Generator breaker is to be controlled and tripped by IPR, PCS, DTT, SCADA, etc.

CONTROL SCHEME AC OR DC
Check to see what type of control scheme is to be implemented. An AC scheme requires the use of an UVT (Under Voltage Trip) and series connection of all the relays and other trip contacts, while a DC scheme requires the parallel connections of all the trip contacts, and a suitable DC source.

AUXILIARY LOADS
Get the minimum and maximum auxiliary loads, and the amounts of load the PPL EU system will be expected to pick up immediately after customer generator unit(s) trip.

FLICKER/HARMONIC PRODUCING LOADS
Get data from the generator for all loads connected to the PPL EU system capable of producing flicker or expected to have substantial harmonic content.

PERIODIC RELAY MAINTENANCE
Discuss the arrangement for test department to test the IPR relay(s) every two years.

PLANT ACCESS
Set up procedure for PPL EU access to the various pieces of PPL EU equipment.

GENERAL OPERATING PROCEDURE
Review the generator’s general operating procedure to see if there is any conflict with the PPL EU system operation.
VOLTAGES AT GENERATOR
Notify the generator of the expected voltage levels at their location. Review transformer info, especially transformer taps.

FAULT DUTIES AND SHORT CIRCUIT LEVELS
Send out the latest estimate of the fault duties at the generator location.

CONSTRUCTION POWER
The generator is required to contact PPL EU field coordinator to arrange for construction power.

START UP POWER
Check to see when start up power is required; this is usually several months before the synchronization date.

IPR CABINET
Check on the location of the IPR cabinet in control room, etc. Discuss the location of various pieces of equipment (PPL Control switch, relays, targets, lockout relays, etc.). The cabinet must be set up so the relays can be sealed, the PCS must be lockable and accessible by PPL only, and the customer can read and reset the targets without unlocking the IPR cabinet.

IPR RELAYS
Review the list of the specific relays to be supplied for the IPR cabinet, check manufacturer, ranges, etc. Check to see that all relays and IEDs can be isolated by test switches (FT-1 or equal), or use drawout cases.

SOLID GROUNDING
Notify the generator that the connection for the transformer will be solidly grounded WYE on the high side, unless otherwise agreed upon by PPL EU.

IPR INTERLOCKS
Review the operation of the PPL EU control switch (PCS) on the breaker used to isolate the generator from the system, and be sure that the voltage and frequency relays block closing of the isolation breaker if the generator does not use synchronism check relaying on this breaker.

SYNCH CHECK RELAY
Verify that the generator has implemented the synch. check relay correctly, and that any breaker which can parallel the generator to the PPL EU system has the IPR synch. check function in its closing circuit.

DRAWING REVIEW – ONE LINE DIAGRAM
Review the generator one line diagram; check for compatibility with the PPL EU system.

DRAWING REVIEW – THREE LINE DIAGRAM
Review location of CT’s, PT’s, metering, and other major equipment. Check the phasing of the generator system and the IPR relays vs. the PPL EU system. Also check the phase names on generator side vs. PPL EU on the terminal pole or dead-end structure.
DRAWING REVIEW – SITE PLAN
Review the site plan for location of various major pieces of equipment – dead-end structure, the last PPL EU pole, etc. Review PPL EU line crossings, the layout of the fence, and the property lines. Whose property is the tap on?

DRAWING REVIEW – SUBSTATION
Review grounding details, we do not have grounding requirements for 12 kV jobs. The customer neutral/ground must connect to the PPL EU system neutral. The conductors must be capable of handling the fault current. Check on the lighting arrester’s location, voltage rating and class. Review the visible break switch location, operation, rating, and manufacturer. Also the switch must be capable of being locked in the open position.

DRAWING REVIEW – CONTROL ELEMENTARY
Review the IPR DC control elementary, and interlocks. Also the Use of auxiliary or lockout relays. Verify the operation of all breakers, especially breaker(s) that must be interlocked to avoid a misoperation of the synchronism schemes.

DRAWING REVIEW – GENERATION ISOLATION BREAKER
Type of breaker (oil, air, magnetic, etc.) and rating (continuous, duty, fault, operating time, etc.). Check tripping and closing logic pay special attention to the synchronizing and synch. check circuits.

DRAWING REVIEW – LOW SIDE GENERATOR BREAKER
Check to see that the above breaker is suitable for the intended operation. Will this breaker withstand 2 per unit voltage in the open condition? Check tripping and closing logic pay special attention to the synchronizing and synch. check circuits. CT’s accuracy class must be C400 or better, also PT’s should be dual winding and rated at 200 VA minimum.

DRAWING REVIEW – POTENTIAL ELEMENTARY
Review the potential elementary for the correct phasing and voltage levels to PPL EU IPR equipment. Check the location of the neutral grounds in these circuits and also that there is only one ground per circuit.

DRAWING REVIEW – CURRENT ELEMENTARY
Review the current elementary – check CT ratio, CT polarities and connections to PPL EU equipment (IPR). Check the location of the neutral grounds in these circuits and also that there is only one ground per circuit.

DRAWING REVIEW – IPR WIRING DIAGRAM
Review the IPR wiring of any gross errors. PPL EU does not review the wiring drawings.

SYSTEM DESIGN
Review the length of the CT, PT, and DC cables, the connected Burden, and the calculated voltage drop. Review the DC system, voltage level (24VDC – 48VDC – 125VDC), minimum/maximum designed operational voltage level, fusing, primary/backup supply. Check use of the PPL EU synch. check relay, and location of the relay. Review the need for breaker failure protection at the generator, and review the implementation. Look into the possibility of installing breaker 'a' switch to block voltage and frequency relays when the generator is off line to avoid nuisance trips. Review the functions of the proposed IPR relay(s).
USE OF CONTACT MULTIPLYING RELAYS
If contact multiplying relays are used in any schemes associated with PPL EU controls they must be designed for failsafe operation.

METERING EQUIPMENT
Review with the generator who will supply the various pieces of equipment, and who will install this equipment. Check on the location and type of metering equipment, indoor vs. outdoors. Find out when the generator will need the PPL EU metering equipment.

27DC - BATTERY MONITOR OR UVT ON AC SCHEME
It may be necessary to add a time delay to the battery monitor, so that it will not operate when various pieces of DC equipment are operated.

RELAY TARGETS
Make arrangements for test to mark the appropriate targets with a PPL EU ID number.

VOLTAGE/REACTIVE SCHEDULE
Review the voltage/reactive requirements for the NUG/IPP, and see that the generator receives and understands this information.

VOLTAGE AND VAR CONTROL EQUIPMENT
Obtain a description of the voltage regulator, voltage and VAR control equipment.

GUIDELINE FOR VOLTAGE/REACTIVE CONTROL
Be sure a guideline is created which details acceptable deviations and the action to be taken for excessive deviations.

5% VOLTAGE REDUCTION
Be sure to notify the generator of the possibility of 5% voltage reductions.

SPARE PARTS – IPR
Inform the generator that PPL EU does not carry spare parts for the IPR cabinet, also determine which components are critical for the continued operation of the generator. List the items for which failure will require the shutdown of the generator.

INITIAL SYNCHRONISM
Review the plans for the initial plant synchronism to the PPL EU system.

REVIEW OF MAIN TRANSFORMER SPECIFICATION
Check for appropriate taps, impedance, windings, grounding, etc.

PROJECT SCHEDULE
Get a copy of the proposed project schedule from the generator to see if there is any impact with PPL EU work.
PPL REVENUE METERING EQUIPMENT
Send out metering equipment information or cut sheets.

SUBSTATION CONTROL HOUSE VENTILATION
Make sure there is adequate ventilation in the building housing the SCADA and the IPR cabinet. This is especially true if the battery is housed in the same room.

TECHNICAL CONTACT
Get name, address, and phone number of the contact for the project.

SCADA
Be sure to have 15 amp branch circuit installed near the SCADA unit. Discuss the operation of the PPL EU SCADA with the generator. Send out the typical form letter for ordering SCADA phone circuit. Get the phone circuit identification number. Provide protection requirements for the SCADA phone circuit.

POINT ASSIGNMENT SHEETS
PPL EU will create the SCADA Point Assignment Sheets for project (as required), and issue, based on information received from the generator.

DTT REQUIREMENTS
PPL EU will provide specific information on the DTT to be installed (if this function is required), as the equipment installed at the generator must match equipment installed at PPL EU substation. Also, PPL EU will supply specific information for the telephone line associated with the DTT equipment.

DRAWING CROSS REFERENCE LIST
PPL EU will issue the ‘as built’ drawings from the generator as the Drawings of Record for the facility. These drawings will be listed by the PPL EU drawing numbers and the generator drawing number will be cross referenced when the final set of drawings are issued.

PROCEDURE IF IPR OR DTT RELAYING FAILS
Describe the 10 hour rule for repair of the IPR or DTT relay package.
APPENDIX III – LIST OF PPL EU APPROVED IPR RELAYS

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Model</th>
<th>Sub Model(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEL</td>
<td>351</td>
<td>7 (only)</td>
</tr>
<tr>
<td>SEL</td>
<td>751</td>
<td>Not A</td>
</tr>
<tr>
<td>Beckwith</td>
<td>M-3410</td>
<td></td>
</tr>
<tr>
<td>Beckwith</td>
<td>M-3520</td>
<td></td>
</tr>
<tr>
<td>Beckwith</td>
<td>M-3425</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: This list will change as circumstances dictate. Availability, manufacturer’s support, software/firmware issues or new technology may dictate removals or replacements on this list. Please allow an additional 3 months to review any devices not on this list.
APPENDIX IV – POWER STATION REQUEST FOR TELECOMMUNICATIONS SERVICE

Telephone Company Contact:
Name:
Address:
Phone:
Fax:
Email:

Customer Contact:
Name:
Address:
Phone:
Fax:
Email:

Electric Substation Data:
<table>
<thead>
<tr>
<th>Substation Name/Address:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Is Substation new or existing? If existing, please provide at least 1 existing telephone number</td>
<td></td>
</tr>
<tr>
<td>Square Foot Area: (Total Size of Ground Grid / Ground Mat)</td>
<td>Sq. ft.</td>
</tr>
<tr>
<td>Total Expected (line-to-ground) Fault Current (Specify Amps RMS or Peak)</td>
<td></td>
</tr>
<tr>
<td>Grid Impedance (in ohms) to Remote Earth: (Specify Measured or Calculated)</td>
<td>ohms (if measured use fall of potential method)</td>
</tr>
<tr>
<td>X/R Ratio:</td>
<td></td>
</tr>
<tr>
<td>% Earth Return Current in Amps:</td>
<td></td>
</tr>
<tr>
<td>Soil Resistivity:</td>
<td></td>
</tr>
<tr>
<td>Telecommunications Peak Factor: (Determined by Telco)</td>
<td></td>
</tr>
<tr>
<td>Peak Ground Potential Rise: (Determined by Telco)</td>
<td></td>
</tr>
<tr>
<td>Remote Earth Point (300 V) distance from Substation Grid: (Determined by Telco)</td>
<td></td>
</tr>
</tbody>
</table>